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ABSTRACT

Distributed Real-Time Systems (DRTS) play an increasingly important role in ev-
eryday life, from traffic light controllers to airplanes, and from telecommunication
networks to medical systems. In the last decades, several formal methods and real-
time formalisms have been proposed to formalize and prove properties of DRTS.
However, traditional real-time formalisms are not always adequate for reasoning
about DRTS because they assume a unique, perfectly synchronous (Newtonian)
measure of time. The most successful techniques for modeling real-time systems
(RTS) are Timed Automata (TA) [AD94], Event Clock Automata (ECA) [AFH94],
and Recursive Event Clock Automata (RECA) [HRS98]. A TA is a finite automaton
augmented with real-valued clocks, where all clocks have infinite precision and are
perfectly synchronized. This causes TA to have an undecidable language inclusion
problem [AD94]. These negative results for TA spurred the search for expressive but
still fully decidable formalisms. To restore decidability, Alur et al. [AFH94] proposed
to restrict the behavior of clocks. Thus, an event clock (EC) is reset when a given
atomic proposition occurs. The values of the event clocks are deterministic, and
thus Event Clock Automata (ECA) are determinizable, which makes the language
inclusion decidable.

However, the expressiveness of ECA is rather weak. Furthermore, the temporal
logic with event clocks [RS97] violates the substitution principle: Every proposition
should be replaceable by a formula. Therefore, Henzinger et al. [HRS98] introduced
the notion of Recursive Event. In a recursive event model (RECA), the reset of a
clock is decided by a lower-level automaton (or formula). This automaton cannot
read the clock it is resetting. Clock resets are thus still deterministic, but the concept
of event is now much more expressive. Also, Henzinger et al. [HRS98] introduced the
temporal logic of recursive event clocks (EventClockTL).

There are other variants of TA called Distributed Timed Automata (DTA) and
Timed Automata with Independent Clocks (icTA) proposed by Krishnan et al. [Kri99]
and Akshay et al. [ABG+08] to model DRTS where the clocks are not necessarily
synchronized. Constraints on the clocks are used to restrict the behavior of the
automata. In DTA, the clocks belonging to one process can be read by another
process, but a clock can only be reset by its owner process. DTA and icTA are
neither determinable nor complementable, and their inclusion problems are un-
decidable [ABG+08]. However, the standard semantics of TA (DTA and icTA) is
based on a Timed Labelled Transition System (TLTS), i.e. a run of a TA is given by
a sequence of actions and a (single) global timestamp while using multiple clocks
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and correspondingly associating multiple timestamps could be a more compact and
functional representation of DRTS.

Moreover, it is a well-known fact that model checking over DRTS quickly be-
comes intractable because the state space often grows exponentially with the num-
ber of components considered. One of the most effective and successful techniques
currently available for reducing the state space is to merge states with the same be-
havior. For untimed systems, the notion of bisimulation [Mil89] is classically used for
this purpose, and its natural extension for RTS, timed bisimulation, has been used
to verify the preservation of sequential behavior and timed properties expressed in
modal and timed temporal logics, such as Timed Computational Temporal Logic
(TCTL) [TY01] and Lν [LLW95]). Timed bisimulation has already been shown to be
decidable for TA [AD94, LLW95], but its standard definition is also based on Timed
Labelled Transition Systems (TLTS).

In this thesis, we remove the above problems of undecidability, perfect clock
synchronization, large representation, and single timestamps. Here, inspired by
[BJLY98, Kri99, ABG+08, HRS98] and [AFH94], we introduce three alternative seman-
tics:

(i) Distributed Event Clocks (DEC): A DEC xq (or y q ) records the time since the
last (or next) reset, measured in the local time of process q , and DECs can
advance independently if they are in different processes. In contrast, Puri et
al. [Pur98] and Wulf et al. [DWDMR04] studied the opposite case, where the
difference between the clocks (drift) is infinitesimally small. In chapter 6 we
extend the semantics of RECA and EventClockTL to include the notion of
DEC. Therefore, we propose a formal semantics for modeling DRTS based on
Recursive Event Clock Automata (RECA) with such distributed (a.k.a. indepen-
dent) clocks, yielding the Distributed Recursive Event Clock Automata (DECA).
We will show that DECA are determinizable, i.e. closed under complemen-
tation, and that their respective language inclusion problems are decidable
(more precisely, PSPACE-complete). In addition, we propose to extend the
existing timed temporal logic (EventClockTL) with distributed clocks to allow
the specification of distributed and timed temporal properties. This gives
us the Distributed (Recursive) Event Clock Temporal Logic (DECTL), which
we show to be PSPACE-complete for the satisfiability and validity problems.
Finally, we show the applicability of DECA and DECTL to a DRTS.

(ii) Multiple Independent Clocks (MIC): A DRTS involves multiple interconnected
real-time processes (called components here), where each component uses
its independent local clocks running at its own rate. Thus, a single timestamp
is sufficient for global clocks, while multiple timestamps support independent
local clocks. In chapter 7 we extend the standard semantics of TA and timed
bisimulation to include the notion of multiple independent clocks.
Therefore, we extend the Timed Labelled Transition Systems (TLTS) and icTA
semantics [ABG+08] to work with the notion of MIC and multi-timed words.
Therefore, we propose a new real-time formalism called Multi-timed Automata
(MTA) based on icTA (and MIC). We also propose a timed modal logic with in-
dependent local clocks, which leads to the (multi-timed) modal logic MLν. We

viii



extend the classical theory of timed bisimulation [Cer93] with the new notion
of multi-timed bisimulation and MTA. We show that multi-timed bisimu-
lation is decidable (more precisely, EXPTIME-complete). Furthermore, we
propose an efficient algorithm for multi-timed bisimulation using refinement
techniques. Finally, we show the applicability of MTA and MLν to a DRTS.

(iii) Distributed Clock Derivatives (DCD): A DCD ẋ is a time derivative of the clock
x. Comparisons can be made between two clock derivatives or between a clock
derivative and a natural constant 1. In the chapter 8 we extend the semantics
of TA to include the notion of distributed clock derivatives. Therefore, we
extend the TA and Lν semantics [AD94] [LLW95] to work with the notion of
DCD and multi-timed words, yielding the (derivative) multi-timed modal logic
DMLν and Timed Automata with Clock Derivatives (DMTA). We show that
(derivative) multi-timed bisimulation is decidable (more precisely, EXPTIME-
complete). Furthermore, we propose an efficient algorithm for (derivative)
multi-timed bisimulation using refinement techniques. Finally, we show the
applicability of DMTA and DMLν to a DRTS.

Keywords: Formal Verification, Model Checking, Timed Automata, Timed Tempo-
ral Logics, Timed Bisimulation.
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RÉSUMÉ

Les systèmes distribués en temps réel (SDTR) jouent un rôle de plus en plus impor-
tant dans la vie quotidienne, des contrôleurs de feux de circulation aux avions et
des réseaux de télécommunication aux systèmes médicaux. Au cours des dernières
décennies, plusieurs méthodes formelles et formalismes du temps réel ont été pro-
posés pour formaliser et prouver les propriétés de SDTR. Mais les formalismes
traditionnels en temps réel ne sont pas toujours adéquats pour raisonner sûr SDTR,
car ils supposent une mesure du temps unique et parfaitement synchrone (newtoni-
enne). Les techniques les plus performantes pour modéliser les systèmes temps
réel (STR) sont les automates temporisés (AT) [AD94], les automates d’horloges
d’événements (AHE) [AFH94] et les automates récursifs d’horloges d’événements
(ARHE) [HRS98]. Un AT est un automate fini augmenté d’horloges à valeurs réelles,
où toutes les horloges ont une précision infinie et sont parfaitement synchronisées.
Cela fait que AT ont un problème d’inclusion de langue indécidable [AD94]. Ces
résultats négatifs pour TA ont stimulé une recherche fondamentale des formalismes
expressifs, mais toujours entièrement décidables. Pour restaurer la décidabilité,
Alur et al. [AFH94] a proposé de restreindre le comportement des horloges. Par
conséquent, une horloge d’événement (HE) est réinitialisée lorsqu’une proposition
atomique donnée se produit. Les valeurs d’horloges d’événements sont détermin-
istes et donc les automates d’horloges d’événements (AHE) sont déterminables, ce
qui rend l’inclusion du langage décidable.

Cependant, l’expressivité de AHE est plutôt faible. De plus, la logique temporelle
avec d’horloges d’événements [RS97] viole le principe de substitution : toute propo-
sition devrait être remplaçable par une formule. Ainsi, Henzinger et al. [HRS98] a
introduit la notion d’Événement Récursif. Dans un modèle d’événements récursifs
(ARHE), la remise à zéro d’une horloge est décidée par un automate (ou formule)
de niveau inférieur. Cet automate ne peut pas lire l’horloge qu’il remet à zéro. Les
réinitialisations d’horloge sont en conséquence toujours déterministes, mais le
concept d’événement est maintenant beaucoup plus expressif. Aussi, Henzinger et
al. [HRS98] a introduit la logique temporelle des horloges événementielles récursives
(EventClockTL).

Il existe d’autres variantes de AT appelées automates temporisées distribuées
(ATD) et automates temporisés avec horloges indépendantes (ATHI) qui ont été
proposées par Krishnan et al. [Kri99] et Akshay et al. [ABG+08] pour modéliser SDTR,
où les horloges ne sont pas nécessairement synchronisées. Des contraintes sur les
horloges sont utilisées pour restreindre les comportements des automates. Dans
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ATD, les horloges appartenant à un processus peuvent être lues par un autre proces-
sus, mais une horloge ne peut être réinitialisée que par son processus propriétaire.
ATD et ATHI ne sont ni déterminables ni complémentables et leurs problèmes
d’inclusion sont indécidables [ABG+08]. Cependant, la sémantique standard de AT
(ATD et ATHI) est basée sur un Système de transition étiquetée temporisée (STET),
c’est-à-dire une exécution d’un AT est donné par une séquence d’actions et un
(unique) horodatage global, tandis qu’utiliser plusieurs horloges et les associer en
conséquence plusieurs horodatages pourrait être une représentation plus compacte
et fonctionnelle du vrai SDTR.

De plus, c’est un fait bien connu que la vérification de modèle sur SDTR déviant
rapidement insoluble, car l’espace d’états croît souvent de façon exponentielle avec
le nombre de composants considérés. L’une des techniques les plus efficaces et les
plus réussies actuellement disponibles pour réduire l’espace d’état consiste à fusion-
ner des états ayant le même comportement. Pour les systèmes non temporisés, la
notion de bisimulation [Mil89] est classiquement utilisée à cette fin, et son extension
naturelle pour STR, la bisimulation temporisée, a été utilisée pour vérifier la préser-
vation du comportement séquentiel et des propriétés temporisées exprimées en
modal et logiques temporelles temporisées, telles que la logique temporelle de calcul
temporisée (LTCT) [TY01] et Lν [LLW95]). La bisimulation temporisée s’est déjà
avérée décidable pour AT [AD94, LLW95], mais sa définition standard est également
basée sur les systèmes de transition étiquetés temporisés (STET).

Dans cette thèse, nous supprimons les problèmes ci-dessus de indécidabilité,
synchronisation parfaite des horloges, grande représentation et horodatage unique.
Ici, inspirés par [BJLY98, Kri99, ABG+08, HRS98] et [AFH94], nous introduisons trois
sémantiques alternatives :

(i) Horloges d’événements distribués (HED) : une HED xq (ou y q ) enregistrée le
temps écoulé depuis la dernière (resp. suivante) réinitialisation, mesuré dans
le temps local du processus q et HED peuvent avancer de manière totalement
indépendante s’ils sont dans des processus différents. En revanche, Puri et
al. [Pur98] et Wulf et al. [DWDMR04] a étudié le cas inverse, où la différence
entre les horloges (dérive) est infiniment petite. Dans le chapitre 6, nous
étendons la sémantique de ARHE et EventClockTL afin d’inclure la notion
de HED. Par conséquent, nous proposons une sémantique formelle pour
la modélisation de SDTR basée sur des automates d’horloge à événements
récursifs (ARHE) avec de telles horloges distribuées (a.k.a. indépendantes),
donnant les automates d’horloge à événements récursifs distribués (AHER).
Nous allons montrer que les AHER sont déterminables, donc fermés par com-
plémentation, aussi que leurs problèmes respectifs d’inclusion de langue sont
décidables (plus exactement, PSPACE-complet). De plus, nous proposons
des extensions de la logique temporelle temporisée existante (EventClockTL)
avec des horloges distribuées pour permettre la spécification de propriétés
temporelles distribuées et temporisées. Cela nous donne la logique temporelle
d’horloge d’événement distribuée (récursive) (LTHED) dont nous montrons
qu’elle est PSPACE-complète pour les problèmes de satisfiabilité et de validité.
Enfin, nous montrons l’applicabilité de AHER et LTHED sur un SDTR.
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(ii) Horloges indépendantes multiples (HIM) : Un SDTR implique plusieurs pro-
cessus en temps réel interconnectés (appelés ici composants) où chaque
composant utilise ses propres horloges locales indépendantes fonctionnant à
son propre rythme. Ainsi, un seul horodatage suffit pour les horloges globales,
tandis que plusieurs horodatages prennent en charge des horloges locales
indépendantes. Dans le chapitre 7, nous étendons la sémantique standard de
AT et la bisimulation temporisée afin d’inclure la notion d’horloges multiples
indépendantes.
Par conséquent, nous étendons la sémantique des systèmes de transitions
étiquetées temporisées (STET) et ATHI [ABG+08] pour travailler avec la no-
tion de HIM et de mots multi-temporisés. Par conséquent, nous proposons un
nouveau formalisme temps réel appelé Automates multi-temporisés (AMT)
basé sur ATHI (et HIM). De plus, nous proposons une logique modale tem-
porisée avec des horloges locales indépendantes, donnant la logique modale
(multi-temporisée) MLν. Nous étendons la théorie classique de la bisimulation
temporisée [Cer93] avec la nouvelle notion de bisimulation multi-temporisée
et AMT. Nous montrons que la bisimulation multi-temporisée est décidable
(plus exactement, EXPTIME-complète). De plus, nous proposerons un algo-
rithme efficace pour la bisimulation temporisée multi-temporisée en utilisant
des techniques de raffinement. Enfin, nous montrons l’applicabilité de AMT
et MLν sur un SDTR.

(iii) Dérivées d’horloges distribuées (DHD) : Une DHD ẋ est une dérivée temporelle
de l’horloge x. Des comparaisons entre deux dérivées d’horloge ou une dérivée
d’horloge avec une constante naturelle 1 peuvent être effectuées. Dans le
chapitre 8, nous étendons la sémantique de AT afin d’inclure la notion de
dérivées d’horloges distribuées. Par conséquent, nous étendons la sémantique
AT et Lν [AD94] [LLW95] pour travailler avec la notion de DHD et multi-mots
temporisés, donnant la logique modale multi-temporisée (dérivée) DMLν et
les automates temporisés avec des dérivées d’horloge (ATDH). Nous montrons
que la bisimulation multi-temporisée (dérivée) est décidable (plus exactement,
EXPTIME-complète). De plus, nous proposerons un algorithme efficace pour
la bisimulation multi-temporisée (dérivée) en utilisant des techniques de
raffinement. Enfin, nous montrons l’applicabilité de ATDH et DMLν sur un
SDTR.

Keywords : Vérification formelle, Automates temporisés, Logiques temporelles
temporisées, Bisimulation temporisée.
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With the rapid growth of distributed computing and networking, the demand for
large-scale and complex distributed applications has increased significantly over the
past decade. Distributed Real-Time Applications are used to control and monitor
Distributed Real-Time Systems (DRTS) such as aerospace systems, aircraft systems,
robotics, nuclear power plants, and so on, and should maintain high assurance and
quantitative real-time properties at all times. Many of the distributed real-time ap-
plications run on heterogeneous computer networks with numerous interconnected
components or processes. Thus, there is a need for distributed applications that can
operate within the time constraints and local clocks imposed on them. However, the
risk of failures in distributed real-time applications is always present, which would
result in numerous losses, including financial resources and human lives.

DRTS are structured into multiple communicating components (or processes)
whose behavior depends on multiple timing constraints, and such components may
be located on multiple computers distributed over a communication network. A
DRTS can be classified as using: (1) synchronous clocks, if all of its components use
the same global time, and (2) asynchronous clocks, if both of its components have
their independent local clocks that are subject to clock drift [Cri96]. Synchronous
and asynchronous clock models represent two ways of modeling and implementing
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DRTS. However, the majority of current implementations of DRTS combine these
two models, which is known as the timed asynchronous model. [Cri96]. In a timed
asynchronous DRTS, each component has access to its local clock, which runs at
the rate of local time [PSR94].

Formal verification methods and real-time formalisms have been used to ver-
ify the correctness of DRTS, but traditional real-time formalisms are not always
adequate for reasoning about DRTS because they assume a unique, perfectly syn-
chronous (Newtonian) measure of time. In real DRTS, such perfect clocks cannot be
implemented. In contrast, using multiple clocks and associating them with multiple
time stamps could be a compact and efficient representation. Therefore, it is crucial
to remove the assumption of perfect clock synchronization by distributing clocks
that can advance independently if they are in different components.

However, tools like UPPAAL [UPP], KRONOS [BDM+98], TEMPO toolset [GMP13],
IF toolkit [BGO+04], HyTech [HHWT97] are all based on synchronous clocks. While
some formalisms with local time, which characterize the concepts of local clocks
of a DRTS, attract an increasing number of studies [BJLY98] [Kri99] [ABG+08], little
attention is dedicated to current literature to the semantics of multiple local time
and the undecidability problem of these formalisms.

Hence, complex interactions between multiple local times and distributed be-
havior of DRTS must be rigorously studied. Lack of tools and formalisms that allow
automatic verification of distributed real-time properties of DRTS emphasize the
relevance of this thesis. This thesis strives for new formalisms for the specification
and modeling of DRTS. Also, this proposal strives for developing computational
tools which allow specifying, analyzing, and reasoning about the behavior of DRTS.

1.1 Context and problem statement

The most successful formalisms for modeling RTS and DRTS are Timed Automata
(TA) [AD94], Event Clock Automata (ECA) [AFH94], and Recursive Event Clock
Automata (RECA) [HRS98]. A TA is a finite automaton augmented with real-valued
clocks. The standard semantics of TA is based on a Timed Labelled Transition
System (TLTS), i.e. a run of a TA is given by a sequence of actions and timestamps.
Also, TA assumes perfect clocks, where all clocks have infinite precision and are
perfectly synchronized. This causes TA to have an undecidable language inclusion
problem [AD94].

To restore the decidability of TA, Alur et al. [AFH94] proposed to restrict the
behavior of the clocks. Thus, an event clock is reset when a given atomic proposition
occurs. The values of the event clocks are deterministic, and thus ECA are deter-
minizable, making the language inclusion decidable. However, the expressiveness
of ECA is rather weak. Therefore, Henzinger et al. [HRS98] introduced the notion of
recursive event. In a recursive event model (RECA), the reset of a clock is decided
by a lower-level automaton (or formula). This automaton cannot read the resetting
clock. Clock resets are thus still deterministic, but the concept of events is now much
more expressive. Also, Henzinger et al. [HRS98] introduced the temporal logic of
recursive event clocks (EventClockTL). EventClockTL has the same expressiveness

2



as the Metric Interval Temporal Logic MITL (a decidable fragment of MTL where
punctual constraints are forbidden) in interval semantics [AFH96]. However, the
expressiveness of event clock models has still been criticized for specifying and
verifying RTS and DRTS because, as with TA, ECA and RECA assume perfect clocks.
All clocks have infinite precision and are perfectly synchronized.

In addition, there are other variants of TA called Distributed Timed Automata
(DTA) and Timed Automata with Independent Clocks (icTA) are proposed by [Kri99]
and [ABG+08] to model DRTS, where the clocks are not necessarily synchronized.
Constraints on the clocks are used to restrict the behaviors of the automata. DTA and
icTA are neither determinizable nor complementable and their inclusion problems
are undecidable [ABG+08].

Extensions of timed modals and temporal logics, such as Timed Propositional
Modal Logic (TPML), Lν [LLW95], and Timed Computation Tree Logic (TCTL
[TY01]), have been used to specify (single-timed) real-time systems. However, in
these logics, the information about independent clocks and distributed components
observed in DRTS is modeled on a global setting [Ray15]. Consequently, these logics
may not be suitable for explicitly specifying local timing properties that need to
hold only in selected parts of the overall system. In essence, this means that the
(single-timed) semantics of these logics is defined in terms of TLTS. However, there
are logics that have been defined to capture aspects of distributed components
and timing properties of DRTS: e.g., DRTL [MP90], APTL [WME93], among others.
Roughly speaking, these logics allow the definition of formulas whose truth values
depend on (or are relative to) only part of their underlying mathematical models. In
the case of DRTL and APTL, these logics are an extension of Second-Order Logic
(SOL) and First-Order Logic (FOL), where the set of formulas consists of constants,
functions, predicates, universal and existential quantifiers, and logical connectives.
In general, these logics are undecidable, but depending on which fragment is used,
the resulting logic may be decidable.

One of the most commonly used methods for DRTS is model checking. This
method automatically checks that all execution sequences of the system are a model
of the formula representing the property (i.e., an exhaustive analysis of the state
space). However, applying this method to DRTS quickly becomes intractable be-
cause the state space often grows exponentially with the number of components
considered. One of the most effective and successful techniques currently available
for reducing the state space is to merge states with the same behavior. For untimed
systems, the notion of bisimulation [Mil89] is classically used for this purpose, and
its natural extension for RTS, timed bisimulation, has been used to verify the preser-
vation of sequential behavior and timed properties expressed in timed temporal
logics (e.g., timed CTL [TY01] or Lν [LLW95]). Timed bisimulation has been shown
to be decidable for TA [LLW95]. Model checking tools, such as UPPAAL [UPP], KRO-
NOS [BDM+98], TEMPO Toolset [GMP13], IF Toolset [BGO+04], HyTech [HHWT97]
and the analysis techniques [BDL+06] [TY01] for RTS have been implemented under
the sequential semantics of TA and TLTS. It can be concluded that the sequential
semantics does not fully describe the behavior of DRTS because it does not consider
interactions between processes with their associated local clocks running at different
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rates. In contrast, a distributed semantics for TA and Network of TA (NTA) has been
introduced in [BC13], but the associated semantics remains in the classical setting
of perfect clocks evolving at the same rate.

1.2 Related Work

There are several formalisms and tools for DRTS based on automata and TLTS. One
of the most widely used formal frameworks for DRTS is TA, and several implementa-
tions and extensions have been considered. For example, Puri et al. [Pur98] studied
the semantics of robustness TA where clocks can drift in a small bounded way, i.e.,
clocks can grow at independent rates in the interval 1±ϵ (for an arbitrary ϵ). Puri et
al. [Pur98] showed that the reachability algorithm is incorrect when clocks drift, even
by infinitesimally small amount, and subsequently proposed a region-based method
for computing Reach∗(Sϵ), the set of reachable states for every drift (the limit as ϵ
→ 0), i.e., Reach∗(S) =

⋂
ϵ>0 Reach(Sϵ). Wulf et al. [DWDMR04] proposed another

perturbation model where the model is syntactically modified by relaxing the guards
through a parametric increase of δ. Wulf et al. [DWDMR04] showed that the notion
of robustness defined in [Pur98], and studied in other works [DK06], [Dim07], is
closely related to the notion of implementability introduced in [DWDMR04], i.e.,
whether for some δ > 0, the extended system model still satisfies the requirements
expressed by the considered properties. Altisen et al., [AT05] studied whether a
TA can be implemented on a given platform satisfying a desired property using
its standard semantics and modeling, instead of extending it (i.e., given a TA A ,
does there exist some δ > 0 and δ clock drift implementation of A , in which the
properties of A are preserved). Altisen et al., [AT05] showed how to transform a TA
into a program and how to model the execution of this program on a given platform
as an assembly of TA. Swaminathan et al. [SFK08] considered a more realistic model
of drifting clocks, where the clock resynchronization is taken into account. Sankur et
al. [SBM14] studied the robustness problem in TA against guard shrinking. Sankur et
al. [SBM14] provided a method for deciding whether shrinking all timing constraints
(guards) of a TA, by possibly different amounts, results in a TA that preserves some
time-abstract behavior and is not blocking. Sankur et al. [San15] studied the robust-
ness analysis of real-time systems modeled by TA, where the goal was to compute a
bound on the timing imprecisions so that the model satisfies a given specification.
Sankur et al. [San15] proposed a semi-algorithm for infinitesimal analysis, which
consists in finding a safe bound on imprecisions.

Krishnan et al. [Kri99] considered asynchronously distributed timed automata
where clocks evolve independently in each component. Dima et al. [Dim07] pro-
posed a distributed time asynchronous automata, where all components evolve
independently of each other, the local times are incremented independently, which
will increment the global time with the sum of the local increments. The timed
languages defined by distributed time-asynchronous automata are strictly larger
than the timed languages of TA. It is proved that this class is equivalent to the lan-
guages defined by a certain class of TA, called partitioned TA. Dima et al. [Dim07]
showed that distributed time-asynchronous automata are more expressive than
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TA. Akshay et al. [ABG+08] focused on the untimed language of DTA. Ortiz et
al. [OLS11] proposed a model that has the same expressiveness as Event Clock
Automata (ECA) [AD94], but did not study possible bisimulation algorithms.

There are other formalisms, such as Timed Input/Output Automata (TIOA)
[KLSV03], Hybrid Automata (HA) [Hen96], Hybrid Input/Output Automata (HIOA)
[LSV03], Multi-Rate Timed Automata (MRTA) [HKPV98], Rectangular Hybrid Au-
tomata (RHA) [HKPV98] which are often used for modeling DRTS [KLSV10] [DLL+10].
Consequently, TIOA, HA, MRTA, RHA and HIOA can be used to analyze Timed
Distributed Algorithms (TDA), such as clock synchronization algorithms that use
local clocks evolving at different rates [KLSV10]. TIOA, MRTA, RHA and HIOA can
be viewed as nondeterministic state machines in which the internal state can change
in two ways: (1) by an instantaneous discrete transition labeled by a discrete action,
or (2) by a trajectory, which is a function describing the evolution of the state over a
time interval [KLSV03]. HIOA are an extension of TIOA, where external variables
model the continuous information flowing into and out of the system [KLSV10].
However, the reachability problem and simulation (and bisimulation) are undecid-
able for TIOA (and HA, RHA, MRTA and HIOA) [KLSV10], but decidable for TA and
NTA.

A special class of HA are RHA [HKPV98]. Their characteristic property is that
derivatives of continuous variables, also called flows, are chosen non-deterministically
from a rectangular set, i.e. an interval, and resets, guards, and invariants are defined
using rectangular sets. However, the reachability problem for RHA is undecid-
able [HKPV98]. A RHA is initialized because each continuous variable is reset at
each transition that leading to a location with a different flow interval for the variable.
Initialized Rectangular Hybrid Automata (IRHA) are the most expressive class of
RHA for which unbounded reachability is decidable [HKPV98]. Singular hybrid
automata (SHA) are a subclass of RHA [HKPV98]. Their continuous variables have
constant rates, i.e. the flow function assigns a constant ci ∈ R to each variable xi at
each location. The flow rate of a variable can be different at different locations. A
SHA is then a RHA where for each flow function the upper and lower bounds are
equal. The reachability problem for Initialized Singular Hybrid Automata (ISHA)
is decidable [HKPV98]. Stopwatch Automata (SWA) are a subclass of RHA that
only allow flow rates to be 0 or 1. Although the expressiveness gained by SWA is
huge [CL00], this seemingly small variation makes the reachability problem unde-
cidable [HKPV98]. Unlike TA, not every SWA is initialized. However, the reachability
problem for non-initialized SWA is undecidable and initialized SWA (ISWA) can be
polynomially encoded by TA. Multi-Rate Timed Automata (MRTA) is a subclass of
SHA, where all continuous variables are so-called skewed clocks, i.e. they have the
same flow rate in every location [HKPV98].

Thus, the decidability of reachability for IRHA works via transformation to a
subclass of RHA [HKPV98]. (1) IRHA can be transformed into ISHA by replacing each
continuous variable x by two continuous variables: xl representing the lower bound
and xu the upper bound of x. (2)ISHA can be transformed into ISWA by setting for
each variable the flows greater than 0 to 1 and scaling all invariants, guards, and
resets concerning the corresponding variable accordingly. Finally, (3) ISWA can be
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transformed into TA, where the flow rate of each variable at each location is 1. The
transformation is done by setting the flow rates of all continuous variables to 1 and
adjusting the resets of these variables [HKPV98].

The notion of bisimulation for TA is studied in several papers [Cer93], [WL97],
[TY01], [BCDL09], [BBLP06]. Cerans et al. [Cer93] gave a proof of decidability for
timed bisimulation. Several techniques are used in the literature to provide algo-
rithms capable of checking (bi-)simulation: Weise et al. [WL97] relied on a zone-
based algorithm for weak bisimulation over TA, but no implementation is given.
Bulychev et al. [BCDL09] studied timed simulation for simulation-checking games,
for which an implementation is available from [BBLP06]. A region construction
for timed bisimulation that is closer to our work was also considered by Akshay
et al. [ABG+08], but never implemented. Tripakis et al. proposed a time-abstract
bisimulation over TA in [TY01]. Krishnan et al. [Kri99] and Ortiz et al. [OLS11] also
manipulated clock drifts to manipulate DTA, but did not consider bisimulation.

In addition, TA, TIOA, and HIOA are supported by a variety of verification tools,
such as UPPAAL [UPP], TEMPO Toolkit [GMP13], HyTech [ACH+95] [HHWT97],
Shrinktech [San13], KRONOS [BDM+98]. UPPAAL [UPP] is a model checker for
TA that performs forward reachability analysis with extrapolation. It can check
the reachability properties of RTS with some extra features like bounded integer
variables and broadcast channels. The TEMPO toolset is based on the seman-
tics of TIOA [GMP13]. However, the reachability problem for TIOA and Linear
Hybrid Automata (LHA) [ACH+95] [HHWT97] is undecidable [HHWT97] [KLSV10].
HyTech [ACH+95] [HHWT97] is a model checker for linear hybrid automata (LHA).
Exact backward and forward computations can be performed, and thus reacha-
bility properties can be checked (but there is no guarantee that the computation
will terminate). Many other operations can be performed on polyhedra, such as
hiding variables (corresponding to projections), while loops, emptiness checks, etc.
KRONOS [BDM+98] is a model checker for TA that allows both exact and abstract
backward and forward computations. A backward computation for TCTL [TY01] is
also implemented in KRONOS. [BDM+98]. Shrinktech [San13] is a tool that imple-
ments the simulation shrinkability algorithm presented in [SBM14]. The tool has
been used to verify the shrinkability of several case studies, such as the Philips Audio
Retransmission protocol, Fischer’s Mutual Exclusion protocol (up to 4 agents), and
some other asynchronous circuit models.

Bengtsson et al. [BGK+02] presented a case study using the UPPAAL verification
tool to verify an industrial audio control protocol with bus collision handling from
Philips. Bengtsson et al. [BGK+02] showed that the protocol behaves correctly when
the error is bound to ±5% on all timing, and incorrectly when the error is bound to
±6%. Bengtsson et al. [BGK+02] used UPPAAL to generate diagnostic traces, and
they studied a buggy version of the protocol actually implemented by Philips in
their audio products, and constructed a possible execution sequence that explains a
known error.

There has been extensive research on extending modal logic to the setting of
RTS. Similar to how DTA extends TA, modal logic has been extended to include
quantitative timing information. Modal logic has been extended with time and
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recursion [LLW95]. Also in [LLW95], model checking and satisfiability problems (for
a bounded number of clocks and values of constants) were shown to be decidable
over TA. In [AL99], the model checking problem for the logic Lν over TA is PSPACE-
complete. In [LM14a], Recursive Weighted Logic (RWL) was studied, a modal logic
that expresses qualitative and quantitative properties. The satisfiability problem
for RWL is decidable by applying a variant of the region technique developed for
TA. Several logics have been defined to capture aspects of quantitative timing in-
formation and distributed properties, such as DRTL [MP90] and APTL [WME93].
In these logics, it is possible to define formulas whose truth values depend on (or
are relative to) only part of their underlying mathematical models. In the case of
DRTL and APTL, these logics are an extension of Second-Order Logic (SOL) and
First-Order Logic (FOL), where the set of formulas is composed of constants, func-
tions, predicates, universal and existential quantifiers, and logical connectives from
FOL. In general, this timed temporal logic does not use different action labels and
delays, i.e. it is interpreted via Timed Labelled Transition System (TLTS).

1.3 Contributions

This thesis contributes several fully decidable formalisms that are effective to study
the behavior and in particular the correct operation of RTS and DRTS:sWe remove the assumption of perfect clock synchronization. Here, inspired

by [BJLY98, Kri99, ABG+08, DL07, Dim03], we study the worst case: the clocks
can advance independently if they are in different processes. However, Puri et
al. [Pur98] and Wulf et al. [DWDMR04] studied the opposite case, where the
difference between the clocks (drift) is infinitesimally small. While Akshay et al.
[ABG+08] studied only the untimed languages of their timed automata, namely
the universal and existential languages, our first contribution is to define and
study the corresponding timed languages. We extend the concept of timed
languages to multi-timed languages for distributed timed specifications.sWe extend the Recursive Event Clock Automata (RECA) [HRS98] with dis-
tributed (a.k.a. independent) clocks, yielding the Distributed Recursive Event
Clock Automata (DECA). We will show that DECA are determinizable, i.e.
closed under complementation, and thus that their language inclusion prob-
lem is decidable (more precisely, PSPACE-complete). We also show the decid-
ability and regularity of their existential and universal timed languages.sWe propose the (recursive) Distributed Event Clock Temporal Logic (DECTL),
which is derived from EventClockTL. [HRS98] by controlling the use of inde-
pendent clocks as follows: clocks have predefined associations with formulas
of the logic, i.e. local clocks used in DECTL can be seen as an extension of the
concept of event clocks used in Recursive Event Clock Automata (RECA). The
event clocks were recursively linked to formula logic. We will show that the
logic DECTL is decidable and, more precisely, PSPACE-complete.sWe extend the semantics of Timed Labelled Transition Systems (TLTS) and
icTA [ABG+08] to work with the notion of multi-timed. word and multi-timed se-
mantics. Therefore, we will propose a formalism called Multi-timed Automata
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(MTA) based on TA and icTA. Furthermore, we extend the classical theory of
timed bisimulation [Cer93] with the new notion of multi-timed. bisimulation
and MTA. We will show that multi-timed bisimulation is decidable (more
precisely, EXPTIME-complete) and present two algorithms:

(i) A forward reachability algorithm for the lockstep composition of two
MTA, which will help us to reduce the state space exploration, and

(ii) A decision algorithm for multi-timed bisimulation using the zone-based
technique [BY04].sWe extend Lν and Hennessy-Milner logics [HM85] [LLW95] with distributed

(a.k.a. independent) local clocks, yielding the (multi-timed) modal logic MLν.
We show that MLν is PSPACE-complete for the satisfiability and validity prob-
lem.sWe extend the TA semantics [ABG+08] to work with the notion of clock
derivatives. Therefore, we will propose a formalism called Timed Automata
with Clocks Derivatives (DMTA) based on TA and MTA. We will show that
(derivative) multi-timed bisimulation is decidable (more precisely, EXPTIME-
complete).sWe extend MLν and Hennessy-Milner logics [HM85] [LLW95] with distributed
clock derivatives, yielding the timed modal logic DMLν. We show that DMLν
is PSPACE-complete for the satisfiability and validity problem.sWe develop and implement a timed bisimulation tool (called MUTES) that
allows to decide whether two DMTA (TA and MTA) are bisimilar.sWe develop and implement a model checking tool (called MIMETIC) that
allows the specification and verification of distributed real-time properties.sWe develop and implement a tool called, MULTI-TEMPO, which allows mod-
eling and simulation of DRTS with independent clocks.sWe show the applicability of DECA, DECTL, MTA, MLν, DMTA, and DMLν to
a DRTS.

1.4 Structure of the thesis

The remainder of this thesis is structured as follows:

(i) Chapter 1 [Introduction.] In this chapter, we introduce the problems ad-
dressed in this thesis and give an overview of its structure.

(ii) Part I: BackgroundsChapter 2 [Preliminaries. ] In this chapter we introduce the mathemati-
cal concepts for the development of this thesis, such as automata, Tran-
sition Systems (TS), Timed Labeled Transition Systems (TLTS), Timed
Automata (TA), Real-time Systems (RTS), and Distributed Real-time
Systems (DRTS).sChapter 3 [Modal and Temporal Formalisms.] In this chapter, we recall
the requirements and properties of formalisms that can define the tem-
poral properties of distributed systems. These formalisms are LTL, CTL,
and HML.
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sChapter 4 [Distributed and Real-Time Temporal Formalisms.] In this
chapter, we recall the two models we use in the thesis to represent real-
time behavior: Timed Sequence and Interval Sequence. We also review
the main formalisms that have been proposed to specify real-time prop-
erties: MTL, MITL, EventClockTL, Lν, TA, ECA, RECA, and icTA.

(iii) Part II: Contributions and ResultssChapter 5 [Distributed Event Clocks] In this chapter, we define the for-
malisms Distributed Event Clock Temporal Logic (DECTL) and Dis-
tributed Event Clock Automata (DECA) in the context of timed interval
sequences (continuous semantics). We also show the applicability of
DECA and DECTL to DRTS.sChapter 6 [Multiple Independent Clocks] In this chapter, we define the
formalisms multi-timed automata (MTA) and (multi-timed) modal logic
MLν in the context of multi-timed words. We show the applicability of
MTA and MLν to DRTS.sChapter 7 [Distributed Clocks Derivatives] In this chapter, we define
the formalisms Multi-timed Automata with Derivative Clocks (DMTA)
and Timed Modal Logic with Derivative Clocks DMLν in the context of
rate constraints. We show the applicability of DMTA and DMLν to DRTS.
We also show the design and implementation details of our multi-timed
bisimulation algorithms for DMTA and our model checking tool.

(iv) Part III: DiscussionsChapter 9 [Conclusions and Future Work.] The conclusions and possi-
ble future work are summarized in Chapter 9.

1.5 Publications

The content of this thesis is based upon, reuses, and extends the following peer-
reviewed publications of the author:sProceedings of conferences.

– Ortiz Vega, J., Legay, A. and Schobbens, P-Y. Distributed Event Clock
Automata. 16th International Conference on Implementation and Ap-
plication of Automata (CIAA-2011), Blois, France, July 12-16, 2011. The
contributions about Distributed Event Clock Automata will be included
in Chapter 5.

– Ortiz Vega, J., Legay, A. and Schobbens, P-Y. Distributed Event Clock
Automata. 16th International Conference on Implementation and Ap-
plication of Automata (CIAA-2011), Blois, France, July 12-16, 2011. The
contributions about Distributed Event Clock Temporal Logic will be
included in Chapter 6.

– Ortiz Vega, J., Amrani, M. and Schobbens, P-Y. Multi-timed Bisimulation
for Distributed Timed Automata. 9th International Symposium, NFM
2017 Moffett Field, Proceedings. Davies, M., Kahsai, T. and Barrett, C.
(eds.) (NFM-2017), CA, USA, May 16-18, 2017. The contributions of
Multi-timed Automata will be included in Chapter 5.
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– Ortiz Vega, J., Amrani, M. and Schobbens, P-Y. MLν: A distributed real-
time modal logic. 11th International Symposium, NFM 2019, Proceed-
ings. Badger, J. M. and Rozier, K. Y. (eds.). (NFM-2019), Houston, USA,
May 7-9, 2019. The contributions about MLν will be included in Chapter
6.sWorkshops.

– Jaime Cuartas, Jesus Aranda, Maxime Cordy, James Ortiz, Gilles Perrouin,
Pierre-Yves Schobbens. MUPPAAL: Reducing and Removing Equivalent
and Duplicate Mutants in UPPAAL, A-MOST workshop at ICST2023,
Dublin, Ireland, 2023.sTechnical Reports and Short Papers.

– James Jerson Ortiz Vega, Axel Legay, and Pierre Yves Schobbens. Dis-
tributed Event Clock Automata.
http://www.info.fundp.ac.be/$\sim$jor/DECAReport/sAbstract and Newsletter.

– James Jerson Ortiz Vega, Axel Legay, and Pierre Yves Schobbens. Dis-
tributed Event Clock Automata.
http://moves.vub.ac.be/$_$media/info/newsletter/newsletter$_$6.pdfsSeminars.

– InfoRum Seminar, Wednesday, 5 December, 2018, University of Namur,
https://www.unamur.be/info,

– MFV Seminar, Wednesday, 12 December, 2018, http://di.ulb.ac.be/verif/,
– Grascomp Doctoral Day, Friday, 22 November, 2019,

https://www.grascomp.be/events/gdd19/,
– FOCUS seminar, Friday, 6 December, 2019,

https://researchportal.unamur.be/activities/focus-research-seminar,
– AVISPA seminar, 25 Years of AVISPA Research Group, Monday, 30

November, 2020, http://cic.javerianacali.edu.co/wiki/doku.php?id=
grupos:avispa:25-years,

– VeriDis seminar, Friday, 24 June, 2022
https://team.inria.fr/veridis/seminar/.

– Love seminar, Friday, 15 November, 2022
https://lipn.univ-paris13.fr/an-alternative-multi-timed-semantics-for-
modelling-the-behaviour-of-distributed-timed-systems/.

– Hybrid Systems research seminar, Monday, 21 November, 2022
https://ths.rwth-aachen.de/.

– Systems & Control seminar, Thursday, 4 February, 2023
https://www.maastrichtuniversity.nl/pieter.collins/extra-activities.

– Formal System Analysis seminar, Thursday, 22 February, 2023
https://www.tue.nl/en/research/researchers/jeroen-keiren.
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Part I

Background
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“We can’t solve problems by using the same kind of thinking we used when we
created them.”

— Albert Einstein
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Distributed Systems (DS) consist of multiple autonomous components that com-
municate, collaborate, and interoperate over communication networks. However,
these communication networks can be affected by some fundamental problems
such as low bandwidth, high latency and instability. Therefore, it is difficult for
a component to know the current status and timing of communication of other
components. These limitations prevent DS from using a global time reference be-
tween all components. These limitations can be avoided if each component could
always run independently. In addition, the time delay can affect the behavior of
the components, and it can be one of the most challenging problems in developing
correct DS.

Also, DS can interact with the physical world, which subjects them to certain
real-time constraints. Systems with such real-time constraints are called Distributed
Real-Time Systems (DRTS) or Distributed Real-Time Critical Systems (DRTCS).
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Examples range from traffic light controllers to airplanes, from telecommunication
networks to medical systems. In the last decades, several formal methods and real-
time formalisms have been proposed to formalize and prove properties of DRTS.
However, the traditional real-time formalisms for reasoning about Real-time Systems
(RTS) are not always adequate for reasoning about DRTS. Therefore, it is crucial
to develop computational models that allow describing, analyzing, and reasoning
about the behavior of DRTS.

This chapter provides definitions and background information about the main
concepts and terms used throughout this thesis. It starts with the basic concept of
Distributed Systems (DS), including their important characteristics and their main
components. Then, an overview of the basic principles of Real-Time Systems (RTS)
and Distributed Real-Time Systems (DRTS) is presented. Then, a general overview of
formal methods (FM) and model checking (MC) is presented. Section 2.1 introduces
DS. Distributed and real-time systems are introduced in sections 2.2 and 2.3, formal
methods, formal verification, and model checking are introduced in sections 2.4, and
finally temporal, real-time, and distributed formalisms are introduced in sections
2.5, 2.6, and 2.7.

2.1 Distributed Systems

Distributed Systems (DS) consist of multiple components running on different
computers connected by a network. Communication between components can be
achieved by passing messages (i.e. FIFO channels or shared variables). In addition to
communicating internally, components can also interact with the external environ-
ment or human operators. The external environment consists of physical devices
such as sensors and actuators. Good examples of distributed systems include smart
grids, telecommunications networks, electronic banking, and airline reservation
systems.

The four main goals of a DS are [TS06]:

(i) Resource Sharing: An important goal of a DS is to make it easy for users to
access remote resources and share them with others in a controlled manner.

(ii) Transparency: A transparent DS is a system that can hide the fact that its
components and resources are physically distributed across many computers.

(iii) Openness: An open DS is a system that is easy to extend and has a common
interface for easier interoperability.

(iv) Scalability: A DS should be scalable in terms of geography, administration, or
size.

Over the past forty years, a variety of formalisms for specifying and verifying
DS have been developed, such as the Labeled Transition System (LTS), Tempo-
ral Logics [Pnu77, MP92], Modal Logics [BdRV01], Dynamic Logics [Par84], Finite
State Machines [Hie04], Petri Nets [Pet81], and others. They have been used as a
framework for reasoning about behavioral properties of distributed systems, such as
control flow, computed values, and ordering of events.

16



2.2 Real-Time Systems

Most DS are real-time systems (RTS). A RTS must obey strict requirements about
the timing of its output actions. Thus, a RTS should ensure that it responds within
strict time constraints (i.e. deadlines). Examples of RTS are engine control sys-
tems in vehicles, air traffic control, mobile devices, nuclear power plants, anti-lock
braking systems, ticket-booking systems, ATMs, factory automation systems, flight
control systems, etc. However, verifying the correctness of RTS is much more com-
plex than for untimed systems. The correctness of RTS depends not only on its
functionality, but also on the time constraints imposed. RTS interact with their
external environment using stimulus and perception signals (see Figure 2.1).

Environment 

Real-Time System

Stimulus

Passage of time

Perception

Figure 2.1: Real-Time Systems

RTS are classified by three types of deadlines:
(i) Hard RTS (HRTS). Failure to meet the deadline can result in catastrophic

consequences, with possible loss of life,
(ii) Soft RTS (SHRT). The missed deadline is not critical, but it can degrade your

quality of service,
(iii) Firm RTS (FRTS). A few missed deadlines may not cause a complete failure,

but more than a few missed deadlines may cause a complete system failure.
A RTS can be modeled by combining hard, soft, and firm real time. Therefore,

verifying the correctness of a RTS model by the classical approaches that rely on
exploring the entire state space of the system is a challenging problem. Due to the
impossibility to manually explore the state space of many systems, much research
has focused on the use of formal methods for their verification (see Section 2.4).

For example, the behavior of RTS can be captured by Timed Labeled Tran-
sition System (TLTS) [Sch99, BLT94]. RTS can be specified in Timed Automata
(TA) [AD94], and properties can be expressed in requirements languages such as
Computation Tree Logic (CTL) [CE82], Timed Computation Tree Logic (TCTL)
[ACD93], Lν [LLW95] or Timed Büchi Automata [Alu92]. Model-checkers, such as
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TREX [ABS01], UPPAAL [UPP], KRONOS [BDM+98] and LASH [LAS], can be used
to explore the state-space of a system model, looking for counterexamples to the
specified property.

2.3 Distributed Real-Time Systems

Distributed Real-Time Systems (DRTS) combine the characteristics of both DS and
RTS, forming a distributed architecture where each component, called a node, is
interconnected by a real-time communication network (see figure 2.2). However,
DRTS are difficult to implement and understand because they are complex, dy-
namic, and completely variable. Their failure can have catastrophic consequences,
so it is crucial to ensure their correctness. However, the correctness and performance
of DRTS usually depend on their real-time properties as well as their behavioral
ones. Therefore, there is a high demand for the implementation of a theoretical
framework to specify and analyze the real-time properties of DRTS as well as their
behavioral ones.

Communication 
Network

Component 1

Component 3

08:10 AM

Component 2

12:30 PM

21:20 PM

Figure 2.2: Distributed Systems

DRTS can be classified according to several criteria, the two most important of
which are that [Cri96]:

(i) Type of communication1. It is helpful to differentiate between asynchronous
and synchronous communications. The asynchronous communication con-
sists of two primitives (blocking message send and blocking message receive)
and synchronous communication consists of two primitives (non-blocking
message send and blocking message receive).

1In this thesis, we use only point-to-point communications because other types of communications
such as multicast and broadcast communications can be contemplated as point-to-point communica-
tions.
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(ii) Type of time reference. It is useful to distinguish between same time and
different time. At the same time means that clocks in different components
are evolving at the same time (i.e., well-synchronized clocks). At different times
means that clocks in different components evolve at different (independent)
times (i.e., non-synchronized clocks).

Now, based on the two criteria presented above, the following formalisms for
DRTS can be obtained:

(i) A formalism for specifying and analyzing DRTS with synchronous commu-
nication using clocks that evolve simultaneously. It is possible with this for-
malism to model DRTS where components are remotely distributed and
communicate synchronously, but the mechanism of synchronized clocks is
well-supported,

(ii) A formalism for specifying and analyzing DRTS with asynchronous commu-
nication using clocks that evolve simultaneously. It is possible with this for-
malism to model DRTS where components are remotely distributed and
communicate asynchronously, but the mechanism of synchronized clocks is
well-supported,

(iii) A formalism for specifying and analyzing DRTS with synchronous communi-
cation using clocks that evolve at different times. With this formalism, it is
possible to model DRTS where components are remotely distributed and com-
municate synchronously. However, the mechanism of synchronized clocks is
not supported.

The goal of this thesis is to establish formalisms for specifying and verifying
properties of DRTS with independent clocks and communication delay.

2.4 Formal Methods

Defects in software development can cause all kinds of negative consequences and
costs, from failures in the core system that can eventually lead to economic losses,
to fatal cases that can cause loss of human life. Formal methods (FM) are used to
identify these defects early in the software life cycle. The FM approach involves
the use of various mathematical formalisms and tools that can be used to specify
the behavior of a system and to formally verify the logical correctness of system
requirements and properties with respect to the formalisms. FM has become a
useful and automated technique used at an early stage during the software develop-
ment process. Moreover, FM are essential for the development and verification of
systems used for distributed safety-critical and mission-critical applications. Four
approaches belong to the class of formal methods; they are not the only ones, but
they are among the most important.

Tests Based on the Model. In this approach, the properties to be verified and
the functional part of the system to be modeled and analyzed are described in a
mathematical formalism. Second, the goal is to automatically generate a finite
covering set of test cases (i.e., a set of tests that ensures that if the system passes
these tests, then it satisfies the properties). Unfortunately, in many cases, such a
covering set does not exist.
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Static Analysis. This approach is used to statically analyze some properties of a
code (i.e., without trying to compute all possible behaviors of the system). With this
approach, it is possible to ensure that a variable is defined when it is used, or that
there is no access to an array outside its domain if it is of constant size. However,
dynamic properties cannot be tested with this approach.

Automatic Demonstration. This approach aims to construct a logical argument
that demonstrates the correctness of the system with respect to a property. This
correctness is expressed as a mathematical theorem in a test system. There are
two different approaches to arguing the correctness of the system: automatic and
semi-automatic. Assistants for automatic rule-based reasoning are then used to
prove this theorem. However, a human operator must guide the assistants if they fail
to prove some lemmas.

Model Checking. In the latter approach, the entire procedure is automatic and
ensures that the system model satisfies a specification. This is represented in a
logical formalism, and the correctness property is proved using algorithms.

All of the above approaches are complementary and are becoming increasingly
prevalent in industrial environments [LDPM20]. Some well-known industrial ex-
amples are the development of the critical part of the Meteor metro at RATP and
the critical parts of software developed by Airbus. The traditional testing methods
are also important because they allow to study a model closer to the real system.
However, this is not always possible, for example when using the real system is too
expensive or too dangerous.

Since our work is in the context of automatic model verification, we will present
this approach in more detail below.

2.4.1 Model Checking

Model checking involves three main steps, which are shown in Figure 2.3.

(i) System Modeling. The system under consideration can be given in the form
of a real system (physical system or software code) or as a description of its
behavior (e.g., a protocol). This system is translated into a mathematical
formalism M .

(ii) Specification Modeling. The model under consideration is often given by a
specification. This model is also translated into a mathematical formalism,
usually a logic, and gives a specification formula ϕ.

(iii) Verification. The model checking algorithms are then used to determine
whether the system model satisfies the formula expressing the specification,
which is noted M |= ϕ. If it does not, the algorithm will highlight inconsisten-
cies in the descriptions of the system and its properties. Otherwise, we get a
guarantee that the model M satisfies the property expressed by ϕ.

The critical factor in model verification is the hardness of the problems studied.
Thus, for the classes of too general models or properties, there is no verification of
algorithms. And even for simple properties, scaling is often difficult, since the size
of the studied systems can be very large. The complexity of verification algorithms
depends on both the class of model and the logic specification under consideration.
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Figure 2.3: Model Checking

On the other hand, a weakness of formal methods comes from the difference
that can exist between models and real system analysis. In fact, the modeling phase,
which is to dive into a mathematical analysis of the system, although necessary,
often simplifies the system. It is therefore natural to focus on the properties of con-
servation when the model is real, in order to obtain a model closer to a real system.
The development of techniques to ensure the implementability of the models, i.e. to
allow the transfer of the properties shown for the models to the systems themselves,
is a key challenge. However, the basic theories for DRTS reasoning are not yet fully
established, and some important questions remain open.

2.5 Temporal Aspects

Several formalisms have been proposed to model the temporal aspects of DS. Modal
and temporal logics are the formalisms used to specify most of the behavioral prop-
erties of DS. Modal logics are formalisms that extend classical logic (first-order
(FO) and higher-order logic) by adding modal operators that qualify truth. Modal
logics can be extended in very simple ways, which can turn out to be extremely
expressive. They can be used to express temporal properties by extending them with
fixpoint operators. Modal µ calculus (Lµ) [Koz83] is an expressive temporal logic
with modalities to reason about the actions that can be performed in a DS.

Temporal logics are special variants of modal logics, with modalities for reason-
ing about how the truth of a proposition can change over time. Temporal logics
have at least one operator to perform arbitrarily many sequences of steps. Therefore,
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temporal logics can be used to specify properties of the behavior of a system in
time. Temporal logics can be divided into two types of semantics. linear time [dB-
dRR89, BAMP81, CE82] and branching time [EH86, Sti87] semantics. In a linear time
semantics, a DS can be viewed as an infinite sequence of states and events (i.e.,
traces), where the events are plotted on the states of the modeled DS. Traces can
be used to describe infinite paths through labeled transition systems (LTS). In a
branching time semantics, a DS can be viewed as an infinite tree of states, where
each branch of this tree represents an execution (i.e., a trace) of the modeled DS,
and each state may have several successor states. A branch describes an (infinite)
tree by a Computational Temporal Logic (CTL).

Other formalisms have been proposed to model the temporal aspects of DS, such
as monadic theories (First Order Monadic Logic (FOML), Second Order Monadic
Logic (SOML)), automata (Büchi automata (BA) [Büc62]). In several papers, [Büc62,
GPSS80, MW84], it is possible to find various proofs of the expressive equivalence
between modal logics, classical logics, and finite automata.

The decidability of these formalisms and in particular their closure under boolean
operations (union, intersection, complement) and their satisfiability (emptiness)
are studied. The above formalisms are decidable for some properties if there is a
finite procedure to prove or disprove these properties. The formalisms LTL, BA,
QTL, FOML, SOML are fully decidable. There are several tools for verifying DS, see
for example SPIN. [DGLM99, HPV00], MOCHA [AHM+98], PROMELA [GMP04] and
LASH [LAS].

2.6 Real-Time Aspects

As we noted earlier, temporal formalisms could be used to express temporal proper-
ties of a behavioral DS. Again, such properties are qualitative and can be described
as a possibly infinite set of traces. However, to specify and reason about real-time
temporal properties of RTS, quantitative timing information about the duration
of events must be added to traces. Real-time temporal formalisms exist in many
variants. Some are extensions of LTL, Finite State Automata (FSA), LTS, BA, and
CTL. There are two alternatives for modeling quantitative time information: discrete
time semantics, where the time values are non-negative integers, and dense time
semantics, where the time values are real numbers.

There are several proposals for quantifying time information (discrete time
semantics and dense time semantics) in temporal formalisms, such as adding bounds
to existing operators (Metric Temporal Logic (MTL) [AH93]) and adding an interval to
existing operators (Metric Interval Temporal Logic (MITL) [AFH96]) of temporal logic
LTL, or the introduction of clocks and constraints on those clocks (Clock Temporal
Logic ClockTL) [AFH96], Timed Propositional Temporal Logic (TPTL) [AFH96],
Timed Modal Logic (Lν) [LLW95], Event EventClockTL [HRS98], and Timed Automata
(TA) [AD94].

The complexity of existing real-time temporal formalisms depends on the (discrete
time and dense time) semantics and the operators used. Many combinations lead
to undecidable formalisms [AH93] [AFH96] [AH91]. In a dense time semantics, for
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example, the ability to express properties such as every event p is followed by an
event q after exactly 1 unit of time leads to undecidability [AFH96]. However,
MITL is a decidable formalism with temporal constraints and interval on temporal
operators. Its complexity is EXPSPACE. [AFH96].

TA [AD94] are one of the most successful formalisms for modeling RTS. A TA is
a finite state machine augmented with real-valued clocks. The model of TA assumes
perfect clocks: all clocks have infinite precision and are perfectly synchronized.
The theory of TA allows solving certain verification problems for RTS, such as
reachability and safety problems. However, language inclusion is undecidable for
TA. [AD94]. This is because TA is not determinable. Thus, one must either work with
deterministic specifications or with a restricted class of TA that has the necessary
closure properties.

The ECA [AFH94], are a subclass of TA that allow non-determinism and are
closed under boolean operations, including complementation. The key feature of
these automata is that they have a pair of event clocks (EC xp , yp ) associated with
each atomic proposition p. The clocks record the time that has elapsed since the
last occurrence of the associated atomic proposition p, as well as the time that will
elapse before the next occurrence of the atomic proposition p.

However, the expressiveness of ECA is rather weak. Furthermore, this logic
violates the substitution principle: Every proposition should be replaceable by a
formula. Therefore, [HRS98] introduced the notion of a “recursive” event. In a
recursive event model, the reset of a clock is decided by a lower-level automaton
(or formula). This automaton cannot read the clock it is resetting. Clock resets are
thus still deterministic, but the concept of “event” is now much more expressive.
The temporal logic of recursive event clocks (variously called SCL [RS97] or Event-
ClockTL [HRS98]) has the same expressiveness as Metric Interval Temporal Logic
MITL [AFH96].

2.7 Distributed Real-Time Aspects

DRTS often operates under strict timing constraints and shares resources among
multiple distributed components. However, both distributed components and
timing constraints make the design of a DRTS challenging. Another important
characteristic of DRTS is their unpredictable (non-deterministic) nature, because
such DRTS are often asynchronous, and it is difficult to accurately estimate the
communication delay between any components. Thus, delay and asynchronous
communication can cause serious difficulties in the design and development of
DRTS. To create correct DRTS, it is necessary to analyze the effects of delay and
asynchrony communication on the behavioral and real-time properties of the DRTS.
Formal methods, such as model checking, have been used to verify the correctness
of DRTS. Model checking of DRTS quickly becomes intractable because the state
space often grows exponentially with the number of components considered. One
of the most effective and successful techniques currently available for reducing the
state space is to merge states with the same behavior. For untimed systems, the
notion of bisimulation [Mil89] (see section 3.5) is classically used for this purpose,
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and its natural extension for RTS, timed bisimulation, has been used to verify the
preservation of sequential behavior and real-time properties expressed in timed
temporal logics (e.g., Timed CTL [TY01] or Lν [ [LLW95]).

Several real-time formalisms have been proposed to formalize and prove proper-
ties of DRTS. However, real-time formalisms are not always adequate for reasoning
about DRTS. Therefore, it is crucial to develop computational models that allow
describing, analyzing, and reasoning about the behavior of DRTS. Networks of TA
and Timed Petri Nets (TPN) [AD94] [Mer74] are traditional real-time formalisms
for modeling DRTS and have become popular as a modeling language for several
model checkers such as UPPAAL and LASH. [UPP] [LAS].

There are other formalisms for modeling DRTS such as Distributed Timed Au-
tomata (DTA) [Kri99, ABG+08]. A DTA consists of several local TAs, called processes.
Each process has clocks. The clocks of the same process evolve synchronously,
but independently of the clocks of the other processes. In [ABG+08], DTA are not
studied much. Instead, their product is computed first, resulting in the class of TA
with independent clocks (icTA). icTA were described in [ABG+08] and are neither
determinizable nor complementable. Their emptiness problem can be solved using
the region construction [ABG+08], but their universal and inclusion problems are
undecidable.

2.8 Wrap up

In this chapter, we introduced some basic concepts and formal methods used for
the specification and verification of RTS and DRTS. We presented the basics of
distributed and RTS and then gave an introduction to RTS, DRTS, formal methods,
formal verification, model checking, and the models used to represent distributed
and RTS.

24



25





C
H

A
P

T
E

R

3
PRELIMINARIES

3.1 Mathematical Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Regular Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Untimed Labelled Transition Systems . . . . . . . . . . . . . . . . . . 29

3.4 Finite Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Bisimulation and Equivalence . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Computability and Complexity . . . . . . . . . . . . . . . . . . . . . . 33

3.7 Wrap up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

This chapter provides an introduction to the field of mathematical concepts,
languages and untimed systems, temporal logics, timed systems, and the theory of
computational complexity. It also introduces the notation and terminology used
throughout the thesis. Readers may also consult additional information in standard
textbooks, such as [Win93], [VvdPGS97] for mathematical concepts, [HMU06, BK08,
Tho02] for automata, [Eme90, MP95, BK08] for temporal logics and model checking,
[Mah05, DW07, Doy06, Alu92] for timed systems, [Pap94, CH97] for computational
complexity. The relation between automata and logics is given in [Tho97].

This chapter is structured as follows. In section 3.1, we show some general
mathematical notations that we will use throughout the thesis. In section 3.2, we
present some general concepts about regular languages and words. We review
necessary preliminaries from transition systems in section 3.3. We review necessary
preliminaries from automata theory in section 3.4. Bisimulation and equivalence
theories are reviewed in section 3.5. Finally, in section 3.6 we review standard
definitions and results from computability and complexity theory.
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3.1 Mathematical Concepts

We will first go through some mathematical concepts and introduce the notations
we use for them in this thesis.

3.1.1 Sets

In mathematics, a (finite or infinite) set X is a collection of objects from a known
universe Ω. The notation x ∈ X (x ∉ X ) is used to denote that the object x is (not)
an object of X . The finite set without an object is denoted as ; and the number
of objects of a set X is denoted as |X |. A set can be specified by enumerating its
objects, such as {0,1} or {a,b,c, · · · }. A set can also be specified by a property P. The
set P = {p | p ∈P} is the set of all properties of P. For example, the set of odd natural
numbers is denoted by {n ∈N | n mod 2 = 1}.

A subset Y of X is denoted by X ⊆ Y , where every object of X is also an object
of Y . The notation X ⊈ Y denotes that X is not a subset of Y . The set containing
the exact subsets of a set X is called the power set of 2X = {Y | Y ⊆ X }. The union of
the sets X and Y is denoted as X ∪Y = {x | x ∈ X or x ∈ Y } and their intersection as
X ∩Y = {x | x ∈ X and x ∈ Y }. The difference between the sets X and Y is the set of
all objects of X that are not objects of X \Y = {x ∈ X | x ∉ Y }. The setN= {0,1,2,3, · · · }
denotes the set of natural numbers, the set R denotes the set of reals, R≥0 denotes
the set of non-negative reals, and the setQ denotes the set of all rational numbers
(Q≥0, the set of non-negative rational numbers). For any x ∈ R, f r act (x) denotes the
fractional part of x, and ⌊x⌋ denotes the integral part of x, i.e., x = ⌊x⌋ + f r act (x).

In this thesis,N and R≥0 sets are often used. The set of sets is denoted as
⋃

X =
{a | a ∈ x f or some x ∈ X }, the intersection as

⋂
X = {a | a ∈ x f or al l x ∈ X }, and

the product of X and Y is denoted as X ×Y = {(x, y) | x ∈ X and y ∈ Y } (the set of all
ordered pairs of objects from X and Y , respectively). In general, one can define the
set of ordered n-tuples (x1, x2, ..., xn) from a product of n sets X1 ×X2 ×·· ·×Xn .

3.1.2 Relations and Functions

A binary relation R between two sets X and Y is a subset of the Cartesian product
X ×Y . If an element x ∈ X is related by R to an element y ∈ Y , we often denote this
fact by writing xRy instead of (x, y) ∈ R. If R ⊆ X × X , we say that R is a binary
relation on X . If R is a binary relation between X and Y , and S is a binary relation
between Y and Z , then RS is a binary relation between X and Z such that xRSz if
and only if there is some y ∈ Y such that xR y and ySz.

A function f from the set X to the set Y is a binary relation from X to Y such
that for every x ∈ X there is at most one y ∈ Y such that (x, y) ∈ f . If there is such a
y , then f (x) is said to be defined, and we write y = f (x). If there is no such y , then
we say that f (x) is undefined. To denote that f is a partial function from X to Y , we
write f : X ,→ Y . A partial function f from X to Y is called a total function if it is
defined for each x ∈ X . To express that f is a total function from X to Y , we write
f : X → Y .
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3.1.3 Asymptotic Notations

In this thesis, we use the following standard asymptotic notations, especially when
measuring the computational complexity of a problem. We are only interested in the
asymptotic behavior of its resource consumption. Our goal is to compare problems
and see if one problem is much harder than another. For this purpose, we introduce
the “big-oH” notation. Let f and g be functions fromN toN. Then f (n) = O(g (n))
if there exists real c and positive integer n0 such that, for all n ≥ n0, f (n) ≤ c · g (n).
Note that the statement f (n) = O(g (n)) means that f (n) and g (n) asymptotically
have the same growth rate, or that they differ only by some linear factor. We write
f (n) = ω(g (n)) if the opposite is true, i.e. g (n) = O( f (n)). If f (n) = O(g (n)) and f (n)
= ω(g (n)), we write f (n) = θ(g (n)).

3.2 Regular Languages

An alphabet Σ is a finite set of characters or symbols. A word is a finite sequence
of Σ symbols. The empty word is denoted by ϵ. The set of all words above Σ is Σ∗.
The star operation (Kleene) is a unary operation defined as Σ∗ =⋃

i∈NΣi where Σi

= {σ1 . . .σi | ∀ j : 1 ≤ j ≤ i : σ j ∈ Σ} for any i ∈N denotes the set of all sequences of
length i of elements of Σ. The set Σ+ is Σ∗\{ϵ}. A language L is a subset of words, i.e.
L ⊂ Σ∗, then if L is finite, we say that it is a finite language. Basic operations on
languages includesUnion languages: L1 ∪L2 = {σ | σ ∈L1 or σ ∈L2},s Intersection languages: L1 ∩L2 = {σ | σ ∈L1 and σ ∈L2},sConcatenation languages: L1 ·L2 = {σ1 ·σ2 | σi ∈Li , i = 1,2},sClosure languages (Kleene-star ): L ∗ =

⋃
i∈N {σ1, · · ·σi | ∀ j : 1 ≤ j ≤ i :σ j ∈L }.

Words of Σ∗ can be ordered using the prefix relation. A word u is a prefix of a
word v , and write it u ⊑ v if there is a word w such that appending w to u yields v
(i.e., ∃w ∈Σ∗ : uw = v). Also, u is a strict prefix of v if there is a w such that uw = v
and w ̸= ϵ.

An infinite sequence (ω) of symbols in Σ is represented by an ordered tuple of
an infinite number of elements. The set of all such infinite sequences is called Σ≤ω.
Such a sequence is called a ω word. A set of such ω-words is called a ω-language.

3.3 Untimed Labelled Transition Systems

An abstract (mathematical) formalism can be used to (automatically) analyze the
behavior of a system over time. The behavior of a system can then be described
as an entity with states and transitions related to states. The transitions can be
autonomous or stimulated by the environment. It is important to see that the
behavior of the system is represented during such a state change. An abstract
(mathematical) formalism that captures the behavior of untimed systems is called
a Labelled Transition System (LTS). Propositional LTS is a formalism where it is
possible to associate the propositions used in the specification of a system with
states of the modeled system. Let P be a finite set of (propositional) atoms. Each
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proposition describes some property of the modeled system that may (or may not)
hold in any of its states. Let 2P be the set of all subsets of P, the labeling function
γ : Q → 2P maps each state in Q (i.e., states in the modeled system) to the subset of
propositions that hold in 2P. A character (or symbol) is an element of a finite set Σ.
In chapter 6 we will use the definition of a symbol as a propositional valuation over
P, so we set Σ= 2P.

Definition 1. A LTS is a tuple A = (Q,q0,Σ,→lts,γ) such that:
(i) Q is a finite set of states,

(ii) q0 ∈ Q is the initial state,
(iii) Σ is a finite alphabet,
(iv) →lts⊆ Q×Σ×Q is a finite set of transitions,
(v) γ : Q → Σ is a function which labels each state q ∈ Q with the set of atomic

propositions (Σ) are true in that state.

The transitions from state to state of a LTS are noted as follows: (q, a, q ′) is
denoted by q

a−→ q′, if a ∈ Σ and (q, a, q ′) ∈→l t s . A proposition p ∈ P is (true) in state
q ∈ Q, denoted as q |= p, since s assigns a truth value true to p, otherwise q |= ¬ p
assigns false. In chapter 6 we will use the notation Σ= 2P.

3.3.1 Trace Semantics

In a modeled DS with finite states, each state can be characterized by a finite set of
propositions (p ⊆P) or a finite alphabet (a ⊆Σ). Now we formally define traces.

Definition 2. A trace σ over the alphabet Σ is an infinite sequence σ=σ0σ1 . . . , such
that for every i ≥ 0, σi ∈ Σ≤ω. Note that an infinite trace can be seen equivalently as a
function fromN to Σ.

In the following we use σi to denote the i -th letter of the sequence σ, this i -th
letter is often called the i -th state of σ. We often use traces over the alphabet σ = 2P,
i.e. the elements of the alphabet are the subsets of the set of propositions P.

3.4 Finite Automata

A Finite Automaton (FA) is an abstract mathematical model of a system with input
symbols, states, and a set of transitions from state to state that occur on input
symbols from the alphabet Σ. FA is another formalism for representing regular
languages. The FA has five elements or tuples.

Definition 3. A (non-deterministic) Finite Automaton (NFA) is a tuple A = (Q,q0,Σ,
→N F A ,QF ), such that :

(i) Q is the set of states,
(ii) q0 ∈ Q is the initial state,

(iii) Σ is a finite alphabet,
(iv) →N F A⊆ Q×Σ×Q is the transition relation,
(v) QF ⊆ Q is a set of accepting (or final) states.
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A NFA can be represented as in Figure 3.1. The states are rounded boxes and
arrows represent transitions between states. Final states are denoted by a double
line (right-most state), while initial states have a dangling incoming arrow (left-most
state). The graph of Figure 3.1 represents the automaton A with:

(i) Q = {q0, q1},
(ii) q0 ∈ Q,

(iii) Σ = {a,b},
(iv) →N F A = {(q0, a, q0), (q0,b, q0), (q0, a, q1), (q1,b, q1)},
(v) QF = {q1}.

     q0 q1

a a, b 

a 

Figure 3.1: A NFA A

For such a NFA A , a sequence of states q0q1 . . . qn ∈ Q is called a run on a word
a1a2 . . . an ∈ Σ∗ iff for every 0 < i ≤ n, there is a transition (qi−1, ai , qi ) ∈ →N F A

(Hence, often the notion of transition relation used is: qi−1
ai−→ qi ). It is an initial run

if q0 ∈ Q and it is final if qn ∈ QF . We say that an automaton accepts a word u if there
is some run q0q1 . . . qn such that:sq0 ∈ Q, andsqn ∈ QF .

The language of a FA A is the set of all words accepted by this automaton: L (A )
= {w ∈ Σ∗ | there exists an accepting run for w in A }. Alternatively, we say that A

recognizes L (A ). A language is regular if there is a FA that recognizes it. Thus, lan-
guages recognized by FA are closed under Boolean operations (union, intersection,
complement), difference, concatenation, and Kleene-star. As a convention, we will
use W c to denote the complement of W , i.e. σ∗\W .

A FA is deterministic (DFA) if there is at most one outgoing transition labeled by
every letter, from every state:

∀q ∈ Q : ∀a ∈Σ : |{q ′ | →DF A (q, a, q ′)}| ≤ 1.

It is complete if additionally there is at least one outgoing transition labeled by each
letter from every state:

∀q ∈ Q : ∀a ∈Σ : |{q ′ | →DF A (q, a, q ′)}| = 1.

A FA is not-deterministic (NFA) if there is at least more than one outgoing transition
labeled by every letter, from every state:

∀q ∈ Q : ∀a ∈Σ : |{q ′ | →DF A (q, a, q ′)}| ≥ 1.

The NFA can be determinized, i.e. transformed into a DFA that accepts the same
language. This operation can cause the number of states to grow exponentially. So
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every language W ⊆ Σ∗ is regular if it is accepted by some NFA if it is accepted by
some DFA.

3.5 Bisimulation and Equivalence

DS can be modeled by a set of interacting modules. Each of these modules can be
thought of as a set of distinct components that can be designed, specified, and veri-
fied independently. The compositions of these components can be modeled using a
set of operations such as sequential, parallel, or concurrent composition to build
larger and more complex compositional systems. They quickly become intractable
because their size grows exponentially with the number of components considered.
This is due to combinatorial explosions that can be caused by an exponential in-
crease in the number of state spaces (i.e., the state explosion problem) of the system
model, generated by a linear increase in the number of running processes in a sys-
tem under verification. Recent work in formal methods has proposed new tools and
techniques to facilitate the exploration and reduction of state explosions. One of
the most effective and successful techniques currently available for state explosion
exploration and reduction is the generation of equivalent state spaces with respect
to some desired properties of the system. A well-known technique for generating
equivalent state spaces is the partition refinement technique (e.g., an application is
the minimization algorithm [PT87]). The partition refinement technique is based on
an iterative procedure in which a partition is refined by splitting its state space to
obtain an equivalent state space of much smaller size with respect to some proper-
ties. Thus, several states in the state space are equivalent, and states belonging to
equivalent states cannot be distinguished by semantic equivalences [HM85, Mil89].
Therefore, smaller state spaces are obtained in which verification and analysis of
the properties of the original systems can be feasible. To reason about behavioral
equivalence between different states (or components) of a system, the notion of
bisimulation [HM85, Mil89] is used. The idea behind bisimulation equivalence is
to consider two states (or components P , Q) and an equivalence relation, denoted
by ∼=, and then consider whether the two states are equivalent with respect to the
equivalence relation (e.g., q1

∼= q2 or P ∼= Q). Bisimulation equivalence is defined
on the states of a given LTS or between different components of a DS. Bisimulation
equivalence with observable actions of a LTS is called strong bisimulation. Bisimu-
lation equivalence with abstractions of internal actions is called weak bisimulation.
In this thesis we will use strong bisimulation.

3.5.1 Bisimulation

Let H1 and H2 be two LTS over the set of actions Σ. Let QH1 (resp., QH2 ) be the set
of states of H1 (resp., H2). Let R be a binary relation over QH1

× QH2
. We say that

R is a strong timed bisimulation whenever the following transfer property holds:

Definition 4. [Cer93] A strong bisimulation over LTS H1, H2 is a binary relation
R ⊆ QH1

× QH2
such that, for all qH1

RqH2
, the following holds:
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(i) For every transition qH1

a−→H1 q′
H1

with a ∈Σ, there exists a matching transition

qH2

a−→H2 q′
H2

such that q′
H1

Rq′
H2

and symmetrically.
Two states qH1

and qH2
are bisimilar, written qH1

∼= qH2
, iff there is a bisimulation

that relates them. H1 and H2 are bisimilar, written H1
∼= H2, if there exists a

bisimulation relation R over H1 and H2 containing the pair of initial states.

3.6 Computability and Complexity

In this section, we will recall some standard concepts from computability and com-
plexity theory [Pap94] [CH97].

3.6.1 Turing Machine

Here, we will briefly recall the definition of Turing Machine (TM).

Definition 5. A (nondeterministic) TM (NTM) is a tuple M = (Q, q0,Σ,Σ∆,→T M ,QF),
such that :

(i) Q is the set of states,
(ii) q0 ∈ Q is an initial state,

(iii) Σ is a finite alphabet,
(iv) Σ∆ ∪ $ is a finite stack alphabet, where ∆ is the blank symbol,
(v) →T M : (Q×Σ∆)× (Q×Σ∆× {L,R}) is a transition function,

(vi) QF ⊆ Q is a set of accepting states.

Definition 6. A deterministic TM (DTM) is a TM, where the transition →T M is a
function from Q×Σ∆ to Q×Σ∆× {L,R}.

The movement of a DTM is entirely determined by the current control state and
the symbol read. A configuration of M is a member of the language Σ∗

∆(Q×Σ∆)Σ∗
∆.

The transition between configurations M can be defined as ((q, a), (q ′,b,d)) ∈→T M

where the machine is in state q and the tape cell currently pointed to by the machine
holds the value a, then the machine rewrites the value a with b, switches to state q ′,
and moves the pointer to the left if d = L and to the right if d = R. A configuration is
an accepting configuration if the state qF ∈ QF is an accepting state. The machine is
said to halt at a word w if every run of M starting from the configuration (q0,$)w
eventually reaches an accepting state (qF ∈ QF). The machine is said to be stopping
if it stops on every input word. For the case where there exists a computation of M

that just stops in an accepting state with an input word w , we say that M accepts the
input word w . Otherwise, it rejects w . The language L (M ) accepted by M consists
of all words w ∈ Σ∗ accepted by M .

3.6.2 Complexity Measures

To determine the amount of time and space needed to solve a computational prob-
lem, an abstract (mathematical) model like the TM is used. Given a halting TM
M and an input word w , the time required by a TM is the total number of state
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transitions (or steps) the machine makes before it stops and outputs the answer (yes
or no). A TM M is said to operate within the time (or space) f (n) if the time M

spends on each input word of length n is at most f (n). The function f is defined
as f : N→ N such that for each n ∈ N the maximum time (or space) required by
M before it terminates on an input word w of length n. A decision problem A can
be solved in time f (n) if there exists a TM operating in time f (n) that solves the
problem. Since complexity theory is interested in classifying problems according to
their difficulty, sets of problems are defined according to some criteria. For example,
the set of problems solvable in time f (n) on a DTM (resp. NTM) running in time
O( f (n)) is denoted by:

NTIME(f(n))= {L | ∃M ∈NTM : M deci des L wi thi n ti me f (n)}

TIME(f(n))= {L | ∃M ∈DTM : M deci des L wi thi n ti me f (n)}

Similarly, we define the class of problems that are solvable by a TM that uses
O( f (n)) space.

NSPACE(f(n))= {L | ∃M ∈NTM : M deci des L wi thi n space f (n)}

SPACE(f(n))= {L | ∃M ∈DTM : M deci des L wi thi n space f (n)}

An important feature to note is that time and space complexities differing only
by some linear constant do not really matter.

Definition 7. Let c be a non-negative real number and let t :N→N be a function
such that l i mn→∞ t (n)

n = 0. Then SPACE(t(n)) = SPACE(c · t(n)) and TIME(t(n)) =
TIME(c · t (n)).

The standard complexity classes for deterministic and nondeterministic TM are
defined as:

(i) P=⋃
k≥0 TIME(nk ) is the class of problems solvable in polynomial-time,

(ii) PSPACE = ⋃
k≥0 SPACE(nk ) is the class of problems solvable in polynomial

space,
(iii) NP=⋃

k≥0 NTIME(nk ) is the class of problems solvable by non-deterministic
polynomial-time TM (NPTTM),

(iv) NPSPACE=⋃
k≥0 NSPACE(nk ) is the class of problems solvable by non-deterministic

polynomial-space TM (NPSTM),

(v) EXPTIME = ⋃
k≥0 TIME(2nk

) is the class of problems that are solvable in
exponential-time k.

(vi) NEXPTIME=⋃
k≥0 NTIME(2nk

) is the class of problems that are solvable by
non-deterministic exponential-time k.

The following containments are standard:

P⊆NP⊆PSPACE=NPSPACE⊆EXPTIME
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A decidable problem is said to be elementary if it is in exponential-time k for
some k ∈N. Otherwise, it is said to be non-elementary. For a complexity class C ,
we write coC for the set of problems whose complements are solvable in C . For
example, coNP is the set of problems whose complements are in NP.

3.7 Wrap up

In this chapter, we introduced some basic mathematical concepts and notations
that we will use in this thesis. LTS and automata theory are introduced, as well as
TM and standard definitions and results from computability and complexity theory.
Bisimulation and equivalence are also introduced.
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In the last thirty years, many formalisms have been introduced for modeling and
specifying untimed and DS. To verify the properties of these systems, it is necessary
to formally capture the desired or undesired behavior. A formalism for expressing
the behavioral properties of a DS should not only be able to express requirements
about such observable properties, but should also be able to relate them over time.
Temporal logics are popular formalisms for expressing properties of DS. There are
several alternatives of temporal logics for specifying DS, such as Linear Temporal
Logic (LTL) [Pnu77], Computational Temporal Logic (CTL) [CE82], CTL* [EH86],
and modal temporal logics, such as the µ calculus [Koz83] and Hennessy-Milner
logic (HML) [HM85, Mil89].

In this chapter, we recall some well-known models and formalisms for model-
ing and defining properties of DS. The chapter is organized as follows. In section
4.1, we introduce the modal and temporal formalisms used to specify DS. We also
present the main theorems used by these formalisms. In section 4.2, we present the
formalisms used to model DS.

4.1 Modal and Temporal Models

Modal logics are important formalisms in mathematical logic because they provide
interesting tradeoffs between expressiveness and theoretical complexity. Temporal
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logics are a well-established formalism for the specification and verification of DS.
Temporal logics are a subset of modal logics. Temporal logics (TL) can be divided into
two categories, linear temporal logics, expressing linear properties, and branching
temporal logics, expressing branching temporal properties. Temporal logics are
interpreted over infinite traces. Linear Temporal Logic (LTL) [MP92] is a standard
representation of the first category. In LTL, a formula is interpreted over a sequence
of traces. Computational Temporal Logic (CTL) [CE82] is a standard representation
of the second category. In CTL, a formula is interpreted over a tree of observable
events. CTL* [EH86] contains formulas of both LTL and CTL. The µ calculus [Koz83]
is a formalism with branching time operators, more expressive than CTL*, and
allows the specification of ω-regular languages and sets of trees. Hennessy-Milner
Logic (HML) [HM85, Mil89] is a modal predecessor of the µ calculus, with greater
interest and impact in computer science, and especially in specifying properties of
DS.

4.1.1 Linear Temporal Logic

LTL is interpreted over (linear) sequences of observations called traces. A trace σ
over a set P of atomic propositions is a ω word (see section 3.2 for notation) σ =
σ0σ1 · · · ∈ (2P)≤ω over the alphabet 2P of states. We let p range over P. A state is a
single observation, and the interpretation of a state σ as a subset of P is that the
proposition p holds (is true) in state σ if p ∈σ.

Definition 8. The syntax of LTL is defined by the grammar:

φ ::= tr ue | p | φ1 ∨ φ2 | ¬φ | ⃝φ | φ1 U φ2 | φ1 S φ2

where p ∈P is an atomic proposition, and φ1, φ2 are well-formed LTL formulas.

The semantics of LTL formulas is formally defined for a model (traces) σ =
σ0σ1 . . . and a formula φ by means of the satisfaction relation |=, as follows.

Definition 9. The semantics of LTL formula φ is evaluated in a position i ≥ 0 of a
trace σ over 2P according to the following rules:

(σ, i ) |= true for every state in σ
(σ, i ) |= p iff p ∈σi , with p ∈P
(σ, i ) |= ¬φ iff (σ, i ) |̸=φ
(σ, i ) |= φ1 ∨φ2 iff (σ, i ) |=φ1 or (σ, i ) |=φ2

(σ, i ) |= ⃝φ iff (σ, i +1) |=φ
(σ, i ) |= φ1Uφ2 iff ∃ j ≥ i ,such that(σ, j ) |=φ2 and ∀k, i ≤ k < j ,

(σ,k) |=φ1

(σ, i ) |= φ1S φ2 iff ∃ j ,0 ≤ j ≤ i ,such that(σ, j ) |=φ2 and ∀k, j ≤ k < i ,
(σ,k) |=φ1

(σ, i ) |= φ denotes that the formula φ holds for the trace σ. The proposition p
evaluates to the value of the atomic proposition p in the first state. The operators
tr ue, ¬, ∨ are propositional connectives. The last three operators relate states over
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time (⃝, U S ). The formula ⃝φ holds for the trace obtained by removing the first
state from σ. The operator is pronounced “next”. The formula φ1 U φ2 holds if there
is some moment j (now or in the future) at which φ2 is true (holds for (σ, j )) and for
all moments before that φ1 holds, i.e. for all k, i ≤ k < j , (σ,k) |=φ1. The operator is
pronounced “until”. The formula φ1 S φ2 holds if there is some moment j (now or
before) at which φ2 is true (holds for (σ, j )) and for all moments after that φ1 holds,
i.e. for all k, j ≤ k < i , (σ,k) |=φ1. The operator is pronounced “since”.

Other operators can be defined in terms of these.s false: false ≡ ¬tr ue,sdisjunction: φ1 ∨φ2 ≡ ¬(¬φ1 ∧¬φ2),s the “eventually φ in the future” operator: ♢φ ≡ tr ue U φ, stating that φ will
be true eventually (sometimes written as Fφ),s the “always φ in the future” operator: □φ ≡ ¬♢¬φ, stating that φ is true at
every moment (sometimes written as Gφ),s the operator Release R is defined as the dual of the Until operator φ1Rφ2 ≡
¬(¬φ1U¬φ2).s the “eventually φ in the past” operator: ♦φ ≡ tr ueS φ, stating that φ was at
some point true,s the “always φ in the past” operator: ■φ ≡ ¬♦¬φ, stating that φ was true at
every moment.

The language L (φ) associated with the LTL formula φ (w.r.t. a set P of propositions)
is the set of all traces over P that satisfy φ,

L (φ) =
{
φ ∈

(
2P

)ω | σ |=φ
}

Example 1. A trace over the set {p, q} of propositions is for instance

{p}{p}{p, q};{q} . . .

It satisfies the formula p U q (q holds at the third instant, and p for the first and
second), but not the formula G p (p fails to hold at the fourth and fifth instant).

Example 2. The formula □(p →♢q), expresses that p propositions are followed by q
propositions.

Example 3. The formula □(p → (p U q)), expresses that when p is true then it
remains true until a q is reached.

The LTL model checking problem is to establish whether TS |= φ holds for a
given finite transition system TS (without terminal states) and the LTL state formula
φ.

Theorem 1. [SC85] The LTL model-checking problem is PSPACE-complete.

The LTL satisfiability problem is to determine whether a given LTL formula φ is
satisfiable. The LTL validity problem is to determine whether a given LTL formula φ
is valid.

Theorem 2. [SC85] The satisfiability and validity problems for LTL are PSPACE-
complete.
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4.1.2 Hennessy-Milner Logic

Hennessy-Milner Logic (HML) is a modal logic that describes properties of states in a
LTS over the set of actions or symbols Σ [HM85]. HML was created as an alternative
approach to formalizing the notion of observational equivalence for concurrent and
communication systems [Mil89].

Definition 10. Let Σ be a finite alphabet, the set H of HML formulas over Σ is defined
by the following grammar:

ϕ ::= tr ue | f al se | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | [a]ϕ | 〈a〉ϕ

where a ∈ Σ, ∧ and ∨ are boolean operators, and [a]ϕ, 〈a〉ϕ are two modalities of the
logic.

The semantics of the diamond modality 〈a〉ϕ is, informally, that at a given state
it is possible to execute an a symbol to a state where ϕ holds, and dually for the
box modality [a]ϕ. The semantics of HML formulas is defined with respect to a
given LTS. We can write formulas using abbreviations, i.e. if F = {a1, . . . , an} ⊆ Σ, we
can use the abbreviation [F ]ϕ for the formulas [a1]ϕ∨ . . .∨ [an]ϕ and 〈F 〉ϕ for the
formulas 〈a1〉ϕ∧ . . .∧〈an〉ϕ. If F = ; then [F ]ϕ = f al se and 〈F 〉ϕ = tr ue.

Definition 11. Let Σ be a finite alphabet and let S = (S, s0,Σ,→l t s ) be a LTS over
Σ. Let H be the set of HML formulas over Σ. The satisfiability relation |= ⊆ (S×H )
relates states of the LTS S to the formulas they satisfy, and is defined as the smallest
relation such that, for all states s ∈ S and formulas ϕ, ϕ1, ϕ2 ∈ H .

s |= tr ue ⇒ tr ue
s |= f al se ⇒ f al se
s |= ϕ1 ∨ϕ2 ⇒ s |=ϕ1 or s |=ϕ2

s |= ϕ1 ∧ϕ2 ⇒ s |=ϕ1 and s |=ϕ2

s |= [a]ϕ ⇒∀s′ ∈ S such that s
a−→l t s s′, then s′ |=ϕ

s |= 〈a〉ϕ ⇒∃s′ ∈ S such that s
a−→l t s s′ and s′ |=ϕ

One of the most interesting properties of HML is that it characterizes bisimilarity
[HM85]. HML was defined as a formalism to understanding process equivalence in
the context of Calculus of Communication Systems (CCS) [HM85] showed that if
two CCS processes are bisimilar, then they satisfy the same set of HML formulas. A
bisimulation equivalence between two LTS H1 and H2 with initial states q0H1

and
q0H2

, respectively, is an equivalence relation ∼= such that q0H1
∼= q0H2

if, and only if,
they satisfy the same set of HML formulas. Then, we say that the two states q0H1

and q0H2
(or equivalently the two initial states of the LTS H1 and H2) are bisimilar

iff there is a bisimulation equivalence between them.

Due to the impossibility of expressing many temporal properties, more expres-
sive modal logics have been studied. The µ-calculus logic [Koz83] is an extension of
the HML with fixpoint operators.
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4.1.3 Fixpoints

Fixpoints play an important role in computer science, especially in recursive al-
gorithms. In denotational semantics, fixpoints are used to define the meaning of
recursive definitions [Koz83]. Fixpoints are also used in set theory. Fixpoints can be
computed by iterative recursion. Given a monotone function f whose domain is a
complete lattice, we say that x is a fixpoint of f if x = f (x), a pre-fixpoint of f if f (x)
≤ x, and a post-fixpoint if x ≤ f (x).

Definition 12. A partially ordered set (often abbreviated to poset) is a pair (A ,≤),
where A is a set and ≤ is a reflexive, antisymmetric and transitive relation over A .
(A ,≤) is a totally ordered set if, for all a, e ∈ A , either a ≤ e or e ≤ a holds.

Definition 13. Let (A ,≤) be a poset, and a set X ⊆A . Then, a ∈A is an upper bound
for X iff x ≤ a for all x ∈ X . a is the least upper bound (lub) of X , notation △X , iff a
is an upper bound for X and moreover, a ≤ a′ for every a′ ∈ A that is an upper bound
for X . Also, a ∈ A is a lower bound for X iff a ≤ x for all x ∈ X . a is the greatest lower
bound (glb) of X , notation ▽X , iff a is a lower bound for X and moreover, a′ ≤ a for
every a′ ∈ A that is a lower bound for X .

Definition 14. A poset (A ,≤) is a complete lattice iff △X and ▽X exist for every
subset X of A . A function f : A → A is a monotonic function iff a ≤ a′ implies that
f (a) ≤ f (a′) for all a, a′ ∈ A .

Theorem 3. Let (A ,≤) be a complete lattice. Then f has a least fixpoint xµ and a
greatest fixpoint xν determined, respectively, by the pre-fixpoints and post-fixpoints of
f :

xµ =△{x ∈ A | x ≤ f (x)},

xν =▽{x ∈ A | f (x) ≤ x}

Definition 15. Let Σ be a finite alphabet and let V be a set of variables. Then, the set
M of µ-calculus formulas over Σ is defined by the following grammar:

ϕ ::= tr ue | f al se | Z | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | [a]ϕ | 〈a〉ϕ | µZ .ϕ | νZ .ϕ

where a ∈ Σ, Z ∈ V , ∧ and ∨ are boolean operators, [a]ϕ, 〈a〉ϕ are two modalities of
the logic and µZ .ϕ and νZϕ are the minimal and maximal fixpoint operators of the
logic.

The semantics of µ-calculus formulas is defined with respect to a given LTS. We
can write formulas using abbreviations, i.e. if F = {a1, . . . , an} ⊆ Σ, we can use the
abbreviation [F ]ϕ for the formulas [a1]ϕ∨ . . .∨ [an]ϕ and 〈F 〉ϕ for the formulas
〈a1〉ϕ∧ . . .∧〈an〉ϕ. If F = ; then [F ]ϕ = f al se and 〈F 〉ϕ = tr ue.

Definition 16. Let Σ be a finite alphabet and let S = (S, s0,Σ,→l t s ) be a LTS over Σ.
Let K : V ⇒ 2S be a valuation of variables. Let M be the set of µ-calculus formulas
over Σ. The satisfiability relation |= ⊆ (S×M ) relates states of the LTS S to the
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formulas they satisfy, and is defined as the smallest relation such that, for all states s
∈ S and formulas ϕ, ϕ1, ϕ2 ∈ M .

s |= Z ⇒ s |=K (Z )
s |= ϕ1 ∨ϕ2 ⇒ s |=ϕ1 or s |=ϕ2

s |= ϕ1 ∧ϕ2 ⇒ s |=ϕ1 and s |=ϕ2

s |= [a]ϕ ⇒∀s′ ∈ S such that s
a−→l t s s′, then s′ |=ϕ

s |= 〈a〉ϕ ⇒∃s′ ∈ S such that s
a−→l t s s′ and s′ |=ϕ

s |= µZ .ϕ ⇒ s |=ϕ{µZ .ϕ/Z }
s |= νZ .ϕ ⇒ s |=ϕ{νZ .ϕ/Z }

A closed recursive formula of µ-calculus is a formula in which every formula
variable Z is bound (i.e., every occurrence of Z appears within the scope of µ Z .ϕ
or ν Z .ϕ). A variable Z is free in the formula φ if some occurrence of it in φ is not
bound. For example, the formula ν Z .Z is closed, but µ Z .[a]Y is not because Y is
free in it. For formulas ϕ and φ, and a variable Z , ϕ{φ/Z } for the formula obtained
by replacing every free occurrence of Z in ϕ with φ (e.g., ϕ{φ/Z }).

4.2 ω-Automata

Finite Automata (FA) accept finite words (or finite traces) and can be adapted to
accept infinite words (or infinite traces). FAs that accept infinite traces over finite
alphabets are called ω automata [Büc62, Tho90]. Since the input trace never ter-
minates (i.e., in ω automata), there are several notions of acceptance. The most
common notion is Büchi acceptance (Büchi Automata (BA)). A run of a BA is ac-
cepting if it visits an infinite number of states marked as accepting. The Muller
acceptance (Muller automata (MA)) [Tho90], replaces the set of accepting states by
a set of sets of states.

4.2.1 Büchi Automata

In a BA the states are called locations. Formally, a BA is defined as follows.

Definition 17. A BA is a tuple A = (Q,Q0,Σ,→B A ,QF ) such thatsQ is the finite set of locations,sQ0 ⊆Q is the set of initial locations,sΣ is the finite alphabet,s→B A : Q × Σ→ 2Q is the transition relation,sQF ⊆ Q is the set of acceptance location.

Since a run of a BA is accepting if it visits locations in QF infinitely often (i.e., in-
finite trace (σ) over the alphabet Σ), it traverses locations of the BA while consuming
symbols of σ. An accepting run of a BA on a trace (σ) is defined as:

Definition 18. A run of a BA A = (Q,Q0,Σ,→B A ,QF ) on a trace σ is an infinite
sequence ρ = q0q1 . . . qn . . . of locations such that:sA run ρ is an initial location q0 ∈ Q0, and
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sFor all i ≥ 0, qi+1 ∈→B A (qi ,σi ).

A accepts σ if A has an initial run on σ in which an accepting state occurs
infinitely often (iff there exist infinitely many i ≥ 0 such that qi ∈ QF ). The language
recognized by A is the set of traces on which the automaton has an accepted run :

L (A ) = {σ ∈Σω | ther e exi st s an accepti ng r un f or σ i n A }.

We can say that A recognizes L (A ). Normally, we can use a different notation
for an accepting run forσ. We denote by i n f (ρ) the set of places that occur infinitely
often in ρ. We say that A universally accepts σ if, for every initial run ρ of A on σ,
i n f (ρ)∩QF ̸= ;. Languages recognized by non-deterministic BA (NBA) are called
ω-regular languages. They are closed under all Boolean operations. The following
ω-language of the NBA in Figure 4.1 is the set of traces ending with aω or ending
with (ab)ω:

({a}∪ {b})∗{a}ω∪ ({a}∪ {b})∗{ab}ω

   

  

a, b 

a 

a 

a 

q0

q1

  q3   q2

b 

a 

Figure 4.1: Nondeterministic Büchi Automaton

Nevertheless, the complement of this language (aω or (ab)ω) is recognized by
the Deterministic BA (DBA) in Figure 4.2. The set of all languages recognized by
DBA is therefore not closed under complementation. However, DBA is strictly less
expressive than NBA. There are other conditions of acceptance for which DBA and
NBA are equivalent.

  

   

  

b 

a 

a 

b 

q0

q1

q2

b a 

Figure 4.2: Deterministic Büchi Automaton
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sMuller: The set of accepting locations QF is replaced by a set QF of sets of
locations. A run ρ is then accepted if i n f (ρ) ∈QF .sRabin: The set of accepting states QF is replaced by a set F = {(E1,QF1

), (E2,
QF2

), . . . , (En ,QFn
)} of pairs of sets of locations. A run ρ is then accepted if there

is a pair (Ei ,QFi
) in F such that i n f (ρ)∩Ei =; and i n f (ρ)∩QFi

̸= ;.sStreett: This is the dual of the Rabin condition. A run ρ is accepted if, for every
pair (Ei ,QFi

) ∈ F i n f (ρ)∩Ei =;→ i n f (ρ)∩QFi
̸= ;.sParity: The acceptance set QF is replaced by a colouring function, which

assigns to every location some natural number F : Q×N. Then, ρ is accepted
if max{F(q) | q ∈ i n f (ρ)} i s even.

Definition 19. The emptiness problem for a Büchi automaton A is to decide if the
automaton A accepts at least one trace, i.e. to decide if L (A ) ̸= ;
Definition 20. The universality problem for a Büchi automaton A is to decide if the
automaton A accepts all possible traces on the set of Σ, i.e. to decide if L (A ) =Σ≤ω.

The following theorems state that the emptiness and universality problems are
decidable for BA and characterizes their complexity:

Theorem 4. [SVW85] The problem of emptiness for BA is NLogSPACE-complete.

Theorem 5. [SVW85] The universality problem for BA is PSPACE-complete.

Theorem 6. [Büc62] Given two BA A and B defined on the same alphabet Σ, there
exists a BA C defined on the alphabet Σ that accepts exactly the union of the language
accepted by the two automaton A and B, i.e. L (C ) =L (A )∪L (B). Further, the
size of this automaton C is linear in the size of the automaton A and B.

Theorem 7. [Büc62] Given two BA A and B defined on the same alphabet Σ, there
exists a BA C defined on the alphabet Σ that accepts exactly the intersection of the
language accepted by the two automaton A and B, i.e. L (C ) = L (A )∩L (B).
Further, the size of this automaton C is linear in the size of the automaton A and B.

Theorem 8. [Büc62] Given a BA A over the alphabet Σ, there exists a BA B that
accepts exactly the complement of language A , i.e. L (B) =Σ≤ω\L (A ). Further, the
size of this automaton B is exponential in the size of the automaton A .

Definition 21. A Labeled BA (LBA) is a tuple A = (Q,Q0,Σ,→B A ,γ,QF ) such thatsQ is the finite set of locations.sQ0 ⊆Q is the set of initial locations,sΣ is the finite alphabet (Σ= 2P),s→B A ⊆ Q × Q is the transition relation.sγ : Q → Σ is a function which labels each state q ∈ Q with the set of atomic,
propositions (Σ) are true in that state,sQF ⊆ Q is the subset of acceptance locations.

Definition 22. A run of a LBA A = (Q,Q0,Σ,→B A ,QF ) on a trace σ is an infinite
sequence ρ = q0q1 . . . qn . . . of locations such that:
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sThe first location of the run ρ is a starting location q0 ∈ Q0, ands for all i ≥ 0, (qi , qi+1) ∈→B A ,sThe sequence σ respects the transition relation of A , for all position i ≥ 0 we
have that σi = γ(q(i )).

Further, we say that the run ρ is accepting if it intersects the set of accepting
places infinitely often, i.e. there are infinitely many places i ≥ 0 such that qi ∈ QF .
We say that σ belongs to the language of A , denoted L (A ), if A has an accepted
run on σ. The Figure 4.3 shows a LBA accepting an infinite number of a.

  

a a 

q0   q1

Figure 4.3: A LBA

4.3 Wrap up

In this chapter, we have introduced several modal and temporal formalisms that can
be used to specify and reason about DS. We present the necessary background on
modal logics, temporal logics, and BA formalisms.
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Temporal formalisms can be used in computer science to reason about proper-
ties of DS. Such properties are only qualitative, and it is impossible to express quan-
titative timing constraints on temporal events or actions. Thus, quantitative timing
constraints are necessary to express properties of RTS and DRTS. Therefore, several
modal and temporal formalisms have been extended to include quantitative timing
constraints on temporal events (Timed Temporal Logics (TTL)). Some are extensions
of LTL (Timed LTL (TLTL)), some adopt CTL (Timed CTL (TCTL)), and some are
derived from modal and interval temporal logics. These logics can also be defined
on discrete or dense temporal semantics. Some have been proposed as extensions
of LTL, with quantitative time constraints and clocks in formulas (Metric Interval
Temporal Logic (MITL) [AFH96], Timed Linear Temporal Logic (TPTL) [AFH96],
Lν [LLW95], and Event Clock Temporal Logic EventClockTL [HRS98]). The complex-
ity of TTL contrasts with the assumed quantitative timing constraints, and some
logical extensions may be undecidable. Model checkers for RTS are Trex [ABS01],
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UPPAAL [UPP], Kronos [BDM+98] and Lash [LAS]. Model checkers with tempo-
ral formalisms that use dense temporal semantics can be more computationally
expensive, and these can suffer more from the state space explosion problem. In
this chapter, we recall some well-known models and formalisms for modeling and
defining properties of RTS and DRTS. The chapter is organized as follows. Sec-
tion 5.1, introduces the discrete and dense real-time semantics used to describe
distributed and RTS. Section 5.2, presents the main real-time modal and temporal
formalisms that have been proposed in the literature to specify distributed and
real-time properties, and we recall their main features. Finally, section 5.3, presents
the formalism of TA and some extensions that are used to model distributed and
RTS.

5.1 Discrete and Dense Time Semantics

As mentioned in Section 2.6, there are two common ways to introduce quantitative
time information into traces: discrete time semantics or dense time semantics.
In the scientific literature, discrete time semantics extensively adopts natural and
integer numbers (N and Z). Dense time semantics use rational and real numbers
(Q and R).

Definition 23. A time semantics is a structure (T,≤,0,+) satisfying the following
properties:sT is a finite or infinite set,s≤ is a total order relation on T, defined as, for any t1, t2 ∈ T, (t1 ≤ t2) ⇔ exists

t3 ∈ T, t3 ̸= 0 and t1 + t3 = t2,s0 is the least element of T,s+ is an associative and commutative operator,

In particular, the term time semantics refers to the set T. Discrete and dense
time semantics are mutually exclusive. An example for a discrete time semantics
is the natural integers (N,≤,0,+). An example for a dense time semantics is the
non-negative reals (R≥0,≤,0,+).s In a discrete time semantics, every point in time has a specific successor point:

∀t1 ∈T ∃t2 ∈T, (t1 < t2 and ∀t3 ∈Tt1 < t3 ⇒ t1 ≤ t2),s In a dense time semantics, every two points can find a point in time between
these points: ∀t1, t2 ∈T, t1 < t2 ⇒∃t3 ∈T, (t1 < t2 < t3).

However, discrete and dense time semantics are commonly classified in terms of
pointwise and continuous semantics. The pointwise semantics is evaluated along
possibly infinite sequences of Timed Traces (TT):

Definition 24. A Timed Trace (TT) over Σ is a sequence ρ = ((σ0, t0)(σ1, t1) . . . (σn , tn))
of actions or propositions paired with non-negative real numbers (i.e., (σi , ti ) ∈ (Σ×
R≥0)) such that the timestamp sequence t = t0 · t1 · · · tn is non-decreasing (i.e., ti ≤
ti+1). We sometimes define ρ as the pair ρ = (σ, t) with σ ∈ Σ∗ and t a sequence
of timestamps with the same length [AD94]. Furthermore, a timestamp sequence
t = t0 · t1 · · · tn respects:
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(i) Initialization: t0 = 0,
(ii) Monotonicity: for all i ≥ 0, ti+1 ≥ ti ,

(iii) Progress: for all t ∈ R≥0, there exists i such that ti > t .

The continuous semantics is evaluated over possibly infinite signals: Given a
set of propositions P, a signal is a function f : R≥0 → 2P mapping t ∈ R≥0 to the set
f (t ) of propositions true at time t . A restriction of the continuous semantics for the
evaluation of timed interval sequences is also called an interval-based semantics, or
in other words, a continuous semantics with finite variability. A function f has the
property of finite variability (also called non-Zenoness) if it can perform only finitely
many actions or propositions in a finite time interval. The assumption is made to
avoid the so-called Zeno’s paradox, which means that infinitely many actions or
propositions occur in a finite amount of time.

An interval I is a convex subset of the time semantics T (in this thesis, we will
use R≥0). An interval is singular if it is a singleton. Two intervals I and I ′ are said to
be adjacent when I ∩ I ′ = ; and I ∪ I ′ is an interval. We denote by IR≥0 the set of
intervals whose bounds are in R≥0. A finite interval I with lower bound l and upper
bound r and l , r ∈ R≥0 is denoted as:s I = [l ,r ] ({t ∈R≥0 | l ≤ t ≤ r }) is both left and right closed interval and l ≤ r ,s I = [l ,r ) ({t ∈R≥0 | l ≤ t < r }) is left closed and right open intervall ≤ r ,s I = (l ,r ] ({t ∈R≥0 | l < t ≤ r }) is left open and right closed interval and l < r ,s I = (l ,r ) ({t ∈R≥0 | l < t < r }) is both left and right open interval and l < r

The left bound of an interval I is denoted as l (I ) and the right bound of an
interval I is denoted as r (I ). The length of interval I (i.e., r − l ) is denoted as |I |. I − t
denotes the interval I ′ = {t ′− t | t ′ ∈ I and t ′ ≥ t }. An infinite interval I with lower
bound a and no upper bound (i.e., ∞) is denoted as:s I = [l ,∞) ({t ∈R≥0 | l ≤ t }) is left closed interval,s I = (a,∞) ({t ∈R≥0 | l < t }) is left open interval.

An interval sequence over R≥0 is an infinite sequence I = I0I1 · · · of non-empty
intervals of IR≥0 where:

(i) successive intervals I j and I j+1 are adjacent and I j < I j+1, for all j ≥ 0
(ii) I is covering, i.e., for every t ∈R+, there exists j ∈N such that t ∈ I j .

Definition 25. A Timed Interval Sequence (TIS) is a pair ρ = (σ, I ) where σ=σ0σ1 · · ·
is an infinite sequence of states and I = I0I1 · · · is an interval sequence. A TIS ρ can
equivalently be seen as a sequence of elements in 2P×IR+ .

A graphical representation of a TIS (;{p}; . . . , [0,4)[4,6)[6. . . ) over P = {p} is
shown in Figure 5.1.

[ ¬p )[ )[ ¬pp

0 4 6

Figure 5.1: Example of a Timed Interval Sequence (TIS)
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Now, our logics will admit infinite variability. Given two intervals I1, I2, we define
the interval between I1 and I2 by BetwI(I1, I2) = {x | I1 < x < I2}. Given a set S and
an interval I , we define S Begins During I by ∃t ∈ (S ∩ I ), and ∄t ′ ∈ S such that t ′

< I . Symmetrically, we define S Ends During I iff ∃ t , t ∈ (S ∩ I ), and ∄ t ′ ∈ S such
that t ′ > I . In this thesis, we concentrate on the more interesting case when time
is modeled by a dense time semantics. Here, we assume both pointwise semantics
and continuous semantics with finite variability. We consider the real numbers
here, but all the results presented in this thesis are also valid if the time semantics is
the rational numbers.

5.2 Real-Time Modal and Temporal Logics

The following section deals with the extension of linear temporal logic with quanti-
tative timing constraints.

5.2.1 Metric Temporal Logic

In this section, we define the syntax and semantics of Metric Temporal Logic (MTL)
[AH93, Koy90]. MTL extends LTL by restricting the temporal operators to (bounded
or unbounded) intervals of real numbers. For example, the formula ♢[3,4]φ means
that φ will be true in 3 to 4 time units from now. MTL extends LTL by adding time
bounds to the Until and Since temporal operators.

Definition 26. The syntax of MTL are defined by the grammar:

φ ::= tr ue | p | φ1 ∨ φ2 | ¬φ | φ1 U I φ2 | φ1 SI φ2

where p ∈P is an atomic proposition, I is an interval (that can be singular) and φ1,
φ2 are well-formed MTL formulas.

Definition 27. The MTL formula φ holds at the time t ∈R≥0 of the TIS ρ, denoted
(ρ, t ) |= φ, according to the following definition:

(ρ, t ) |= p iff p ∈ ρ(t )
(ρ, t ) |= φ1 ∨φ2 iff (ρ, t ) |=φ1 or (ρ, t ) |=φ2

(ρ, t ) |= ¬φ iff (ρ, t ) |̸=φ
(ρ, t ) |= φ1U Iφ2 iff ∃t ′ ∈ (t + I ) with (ρ, t ′) |=φ2,and ∀t ′′ ∈ (t , t ′),

(ρ, t ′′) |=φ1

(ρ, t ) |= φ1SIφ2 iff ∃t ′ ∈ (t − I ) with(ρ, t ′) |=φ2,and ∀t ′′ ∈ (t ′, t ),
(ρ, t ′′) |=φ1

Example 4. The following MTL formula □(p →♢[5,5]q) expresses that every event p
is followed after exactly 5 unit of time by an event q.

Unfortunately, over the dense time domain, the satisfiability and model checking
problems for MTL are undecidable [Hen91]. This has led some researchers to
consider various restrictions on MTL in order to recover decidability; see, e.g.,
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[HMP92, Wil94, AD94]. Undecidability arises from the fact that MTL formulas can
capture the computations of a Turing machine: configurations of the machine can
be encoded within a single time interval of unit duration, since the density of time
can accommodate arbitrarily large amounts of information. A MTL formula can
then specify that the configurations be propagated exactly from one time interval
to the next, so that the TIS satisfying the formula correspond exactly to the halting
computations of the Turing machine.

Theorem 9. [OW07] The logic MTL under the point-wise semantics is decidable, and
non-primitive recursive complexity.

Theorem 10. [AFH96] The logic MTL under the continuous semantics is undecidable.

5.2.2 Metric Interval Temporal Logic

Metric Interval Temporal Logic (MITL) [AFH96] is a restricted version of MTL in
which the interval decorating the until and since modalities cannot be singular
(i.e., reduced to a single point). MITL is a decidable variant that restricts temporal
constraints on temporal operators to be in the form of an interval bounded by
integers.

5.2.2.1 Pointwise Metric Interval Temporal Logic

The syntax and semantic of the pointwise MITL is based on timed traces (TT).

Definition 28. The syntax of pointwise MITL is defined by the grammar:

φ ::= tr ue | p | φ1 ∨ φ2 | ¬ φ | φ1 U I φ2 | φ1 SI φ2

where p ∈ P is an atomic proposition, I is a nonsingular interval and φ1, φ2 are
well-formed MITL formulas.

Definition 29. The pointwise MITL formula φ holds in position i ∈ N of the TT
ρ = (σ, t ), denoted (ρ, i ) |=φ, according to the following definition:

(ρ, i ) |= p iff p ∈σi

(ρ, i ) |= φ1 ∨φ2 iff (ρ, i ) |=φ1 or (ρ, i ) |=φ2

(ρ, i ) |= ¬φ iff (ρ, i ) |̸=φ
(ρ, i ) |= φ1U Iφ2 iff ∃ j > i such that (ρ, i ) |=φ2,τ j −τi ∈ I and ∀k with

i < k < j ,we have(ρ,k) |=φ1

(ρ, i ) |= φ1SIφ2 iff ∃ j ,0 ≤ j < i such that(ρ, i ) |=φ2,τ j −τi ∈ I and ∀k with
j < k < i ,we have(ρ,k) |=φ1

5.2.2.2 Continuous Metric Interval Temporal Logic

The formulas of MITL are built from propositional symbols, boolean connectives,
and time-bound Until and Since operators.
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Definition 30. The syntax of MITL are defined by the grammar:

φ ::= tr ue | p | φ1 ∨ φ2 | ¬ φ | φ1 U I φ2 | φ1 SI φ2

where p ∈ P is an atomic proposition, I is a nonsingular interval and φ1, φ2 are
well-formed MITL formulas.

Definition 31. The MITL formula φ holds at time t ∈R≥0 of the TIS ρ, denoted (ρ, t )
|= φ, according to the following definition:

(ρ, t ) |= p iff p ∈ ρ(t )
(ρ, t ) |= φ1 ∨φ2 iff (ρ, t ) |=φ1 or (ρ, t ) |=φ2

(ρ, t ) |= ¬φ iff (ρ, t ) |̸=φ
(ρ, t ) |= φ1U Iφ2 iff ∃t ′ ∈ (t + I ) with (ρ, t ′) |=φ2,and ∀t ′′ ∈ (t , t ′),

we have(ρ, t ′′) |=φ1

(ρ, t ) |= φ1SIφ2 iff ∃t ′ ∈ (t − I ) with(ρ, t ′) |=φ2,and ∀t ′′ ∈ (t ′, t ),
we have(ρ, t ′′) |=φ1

Below we also introduce a few derived temporal operators, more precisely, MITL
derived operators if I is taken to be non-singular and φ is an MITL formula: ♢Iφ≡
⊤U Iφ, □Iφ ≡ ¬♢I¬φ. As well as their past counterparts:

←−
♢Iφ ≡ ⊥SIφ,

←−
□Iφ ≡

¬←−♢I¬φ.

Example 5. The following MITL formula ♢(0,5)p expresses that when evaluated in
time t , eventually p holds in the interval t + (0,5).

Theorem 11. [AFH96] The satisfiability and variability problems for MITL are decid-
able.

Theorem 12. [AFH96] The complexity of the satisfiability and validity problems for
MITL are EXPSPACE-Complete.

Theorem 13. [AFH96] The satisfiability and variability problems for MITL0,∞ are
PSPACE-Complete.

5.2.3 Event Clock Temporal Logic

Here, we present Event Clock Temporal logic (EventClockTL), a logic introduced
in [RS97]. The language expressible by EventClockTL formula can be defined by
Event Clock Automata ECA [AFH94], a subclass of TA.

5.2.3.1 Point-wise Event Clock Temporal Logic

The syntax and semantic of the point-wise EventClockTL is based on timed traces
(TT).

Definition 32. The syntax of EventClockTL is defined by the grammar:

φ ::= tr ue | p | ▷∼c φ | ◁∼c φ | φ1 ∧ φ2 | φ1 ∨ φ2 | ¬ φ | φ1 U φ2 | φ1 S φ2
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where p ∈ P is an atomic proposition, I is an interval (that can be singular), c is
an integer constant, ∼ ∈ {<,≤,=,≥,>} and φ1, φ2 are well-formed EventClockTL
formulas.

Definition 33. The point-wise EventClockTL formula φ holds in position i ∈N of the
TT ϱ= (σ,τ), denoted (ϱ, i ) |=φ, according to the following definition:

(ϱ, i ) |= p iff p ∈σi

(ϱ, i ) |= φ1 ∨φ2 iff (ϱ, i ) |=φ1 or (ρ, t ) |=φ2

(ϱ, i ) |= φ1 ∧φ2 iff (ϱ, i ) |=φ1 and (ρ, t ) |=φ2

(ϱ, i ) |= ¬φ iff (ϱ, i ) |̸=φ
(ϱ, i ) |= φ1Uφ2 iff ∃ j ∈ i such that (ϱ, j ) |=φ2,and ∀k, j < k ≤ i ,

we have(ϱ,k) |=φ1

(ϱ, i ) |= φ1S φ2 iff ∃ j ,0 ≤ j ≤ i such that(ϱ, j ) |=φ2,and ∀k, j ≤ k ≤ i ,
we have(ϱ,k) |=φ1

(ϱ, i ) |= ▷∼cφ iff ∃ j > i such that (ϱ, j ) |=φ,∀k, i < k < j , (ϱ,k) |̸=φ
and τ j −τi ∼ c

(ϱ, i ) |= ◁∼cφ iff ∃ j ,0 ≤ j < i such that (ϱ, j ) |=φ, ∀k, j < k < i , (ϱ,k) |̸=φ
and τi −τ j ∼ c

Example 6. The following EventClockTL formula ♢(▷≤2p) expresses that eventually
p will be true within 2 time units.

Example 7. The following EventClockTL formula □(◁=1q → ♢(▷≤3p)) expresses
that if q is exactly distant 1 time units of p, then eventually p will be true within 3
time units.

Example 8. The following EventClockTL formula (p ∧◁<2q) expresses that if p
occurs preceded, 2 time units before by a q.

Theorem 14. [Ras99] The satisfiability and variability problems for EventClockTL
are decidable.

Theorem 15. [Ras99] The complexity of the satisfiability and validity problems for
EventClockTL are PSPACE-Complete.

5.2.3.2 Continuous Event Clock Temporal Logic

The formulas of EventClockTL are built from propositional symbols, boolean con-
nectives, and time bounded until and since operators and two real-time operators at
time t : the recording operator ◁I φ asserts that φ was true last time in the interval
t − I , and the predicting operator ▷I φ asserts that φ will be true next time in the
interval t + I .

Definition 34. The syntax of EventClockTL are defined by the grammar:

φ ::= tr ue | p | ▷I φ | ◁I φ | φ1 ∧ φ2 | φ1 ∨ φ2 | ¬ φ | φ1 U I φ2 | φ1 SI φ2

where p ∈P is an atomic proposition, I is an interval (that can be singular) and φ1,
φ2 are well-formed formulas.
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We can now define how to evaluate the truth value of an EventClockTL formula
along TIS. Let φ be a continuous EventClockTL formula and let ρ be a TIS contain
all propositions that occur in φ.

Definition 35. The EventClockTL formula φ holds at time t ∈ R≥0 of the TIS ρ,
denoted (ρ, t ) |= φ, according to the following definition:

(ρ, t ) |= p iff p ∈ ρ(t )
(ρ, t ) |= φ1 ∨φ2 iff (ρ, t ) |=φ1 or (ρ, t ) |=φ2

(ρ, t ) |= φ1 ∧φ2 iff (ρ, t ) |=φ1 and (ρ, t ) |=φ2

(ρ, t ) |= ¬φ iff (ρ, t ) |̸=φ
(ρ, t ) |= φ1U Iφ2 iff ∃t ′ ∈ (t + I ) with (ρ, t ′) |=φ2,and ∀t ′′ ∈ (t , t ′),

we have(ρ, t ′′) |=φ1

(ρ, t ) |= φ1SIφ2 iff ∃t ′ ∈ (t − I ) with(ρ, t ′) |=φ2,and ∀t ′′ ∈ (t ′, t ),
we have(ρ, t ′′) |=φ1

(ρ, t ) |= ◁Iφ iff ∃t ′ < t with t ′ ∈ (t − I ) and (ρ, t ′) |=φ,and ∀t ′′ < t ,
with t ′′ > (t − I ), (ρ, t ′′) |̸=φ

(ρ, t ) |= ▷Iφ iff ∃t ′ > t with t ′ ∈ (t + I ) and (ρ, t ′) |=φ,and ∀t ′′ > t
with t ′′ < (t + I ), (ρ, t ′′) |̸=φ

As usual, we can define other temporal operators (LTL) and real-time operators.
Note that they are defined in a strict way, i.e. they do not constrain the current state.
Non-strict operators are easily defined from their strict counterparts. We use the
following syntactic shortcuts for derived operators: ⊤≡¬φ1∨φ1, and ⊥≡¬⊤, ♢φ≡
⊤Uφ, □φ ≡ ¬♢¬φ. As well as their past counterparts:

←−
♢φ ≡⊥S φ,

←−
□φ ≡ ¬←−♢¬φ.

Just for the behavior semantics, there are: Bφ≡φS φ, Jφ≡⊥Uφ,
←−
Jφ≡⊥S φ.

Theorem 16. [Ras99] The satisfiability and variability problems for EventClockTL
are decidable.

Theorem 17. [Ras99] The complexity of the satisfiability and validity problem for
EventClockTL are PSPACE-Complete.

5.2.4 Timed Modal Logics

The Timed Modal Logic Lν is a real-time extension of the Hennessy-Milner Logic
(HML) with greatest fixed-points [LLW95]. Lν is a modal logic that describe prop-
erties of states in a TLTS over the set of actions or symbols Σ. We now present the
syntax of the logic.

Definition 36. Let Σ be a finite alphabet of actions and X be a finite set of clocks, the
formulae of Lν over Σ, X and Id are defined by the grammar:

ϕ ::= tr ue | f al se | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | [a]ϕ | 〈a〉ϕ | ∃ϕ | ∀ϕ | x i n ϕ | φ | Z

where a ∈ Σ, x ∈ X, φ ∈Φ(X), Z ∈ Id, [a]ϕ, 〈a〉ϕ are two modalities of the logic, and ∃
ϕ and ∀ ϕ are the two time modalities.
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The meaning of the identifiers in Id is specified by a declaration D assigning a Lν
formula to every identifier in order to define properties with maximal fixpoints. A
declaration is of the form Zi = D(Z) where Z = (Z1, . . . ,Zn) and D(Z) is a formula over
identifiers in Z.

Definition 37. Let Σ be a finite alphabet, X be a finite set of clocks. The semantics of
formulas in Lν is implicitly given with respect to a given LTS inductively as follows:

(q,µ) |= tr ue ⇔ tr ue
(q,µ) |= f al se ⇔ f al se
(q,µ) |= ϕ1 ∧ϕ2 ⇔ (q,µ) |=ϕ1 and (q,µ) |=ϕ2

(q,µ) |= ϕ1 ∨ϕ2 ⇔ (q,µ) |=ϕ1 or (q,µ) |=ϕ2

(q,µ) |= φ ⇔µ |=φ for φ ∈Φ(X )

(q,µ) |= [a]ϕ ⇔∀q
a−→l t s q ′, (q ′,µ) |=ϕ

(q,µ) |= 〈a〉ϕ ⇔∃q
a−→l t s q ′, (q ′,µ) |=ϕ

(q,µ) |= xi nϕ ⇔ (q,µ[xp → 0]) |=ϕ
(q,µ) |= ∃ϕ ⇔∃ t ∈R≥0,∃q ′ ∈ Q, such that q

t−→l t s q ′, (q,µ+ t ) |=ϕ
(q,µ) |= ∀ϕ ⇔∀ t ∈R≥0,∀q ′ ∈ Q,such that q

t−→l t s q ′, (q,µ+ t ) |=ϕ
(q,µ) |= x + c ∼ y + t ⇔µ(x) + c ∼µ(y) + t
(q,µ) |= Z the greatest fixpoint in D(Z)

5.3 Formalisms of Distributed and Real-Time Automata

The following section deals with the extension of finite state automata with quanti-
tative timing constraints.

5.3.1 Timed Labelled Transition Systems (TLTS)

Timed Labelled Transition Systems (TLTS) are used to describe the behavior (i.e.,
all possible executions) of a model of a RTS. TLTS can be used to describe the
operational semantics of TA. Intuitively, a TLTS consists of a set of states and a set of
transitions between states. Each transition denotes either a time delay or an action.
Thus, a TLTS prescribes a set of allowed timed traces (TT).

Definition 38 (Timed Labelled Transition Systems). A TLTS [HMP91] is a tuple
D = (Q, q0,Σ,→t l t s ,QF ) where:

(i) Q is a finite set of states,
(ii) q0 ∈ Q is the initial state,

(iii) Σ is a finite alphabet of actions,
(iv) →t l t s ⊆ Q× (Σ⊎R≥0)×Q is a set of transitions
(v) QF is a finite set of final states.

The transitions from one state to another state of a TLTS are noted in the follow-
ing way:

(i) Discrete transition: (q, a, q ′) is denoted q
a−→ q′, if a ∈ Σ and (q, a, q ′) ∈ →t l t s

and,
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(ii) Delay transition: (q,d , q ′) is denoted q
d−→ q′, if d ∈ R≥0 and (q,d , q ′) ∈→t l t s .

A run of D can be defined as a finite sequence of moves, where discrete and

continuous transitions alternate: θ = q0
d0−→ q ′

0
a1−→ q1

d1−→ q ′
1

a2−→ q2 . . .
dn−1−−−→ q ′

n−1
an−→

qn , where ∀0 ≤ i ≤ n, qi ∈ Q, ∀ j ≥ 0, d j ∈ R≥0, q ′
j ∈ Q and ∀k ≥ 1, ak ∈ Σ. A run is

initial if it starts in q0. Thus, an initial path describes one execution of the system.
A run is accepting if it starts from the initial state and ends in a final state. The
duration of a run is the sum of the delays that occur along the run. The timed trace
corresponding to ρ is ρ = ((a0, t0), (a1, t1) . . . , (an , tn)), where ti =

∑i−1
j=0 d j . A finite

timed trace ρ is accepted by D, called timed language, if and only if there exists an
accepting run over D whose timed trace is ρ. The timed language of D, denoted
L (D), is defined as the set of all finite timed traces accepted by D. Two TLTS D1 and
D2 are timed language equivalent if L (D1) = L (D2), that is they accept the same
timed traces.

Moreover, we require the following standard properties for TLTS:

(i) Time-determinism: for all q , q ′, q ′′ ∈ Q and for all d ∈ R≥0, if q
d−→ q′ and q

d−→ q′′,
then q ′ = q ′′,

(ii) 0-Delay: for all q , q ′ ∈ Q, q
0−→ q′ ≡ q = q ′,

(iii) Additivity: for all q , q ′, q ′′ ∈ Q and for any d , d ′ ∈ R≥0, if q
d−→ q′ and q′ d ′

−→ q′′,
then q

d+d ′
−−−→ q′′,

(iv) Continuity: for all q , q ′ ∈ Q and for some d ∈ R≥0, if q
d−→ q′ then for any d ′, d ′′

∈ R≥0 such that d = d ′+d ′′, there exists q ′′ such that q
d ′
−→ q′′ d ′′

−−→ q′.

5.3.2 Timed Automata

Timed Automata (TA) are an extension of finite automata (FA) with a finite set of
clocks that evolve synchronously with time and allow measurement of delays [AD94].
TA model RTS by accepting timed words that specify when a stimulus or response
occurs. Time is tracked by clocks that evolve at the same rate. They can be reset
along the transitions, so that at any time a clock value represents the time elapsed
since the last reset. Each transition specifies clock constraints, making the transition
fireable only if the current clock values satisfy them. A location can also specify clock
invariants, forcing the automata to leave it if it becomes false.

5.3.2.1 Clock Constraints

Let X be a finite set of variables ranging over R≥0, called clocks. Let Φ+(X ) be a set
of clock constraints over X. A clock constraint φ ∈ Φ+(X ) can be defined by the
following grammar:

φ := tr ue | x ∼ c | x−y ∼ c | φ1 ∧ φ2

where x, y ∈ X, c ∈N, and ∼ ∈ {<, >, ≤, ≥, =}. The clock constraints of the form
tr ue, x ∼ c are called non-diagonal constraints and those of the form x− y ∼ c are
called diagonal constraints. The set of non-diagonal constraints over X is denoted by
Φ(X ). Here we use the non-diagonal constraints as in [AD94], where the comparison
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between two clocks is not allowed [BLR05]. It is known that diagonal constraints do
not add expressiveness to TA. [BPDG98](Section 4.2): diagonal constraints can be
removed from TA [BLR05], but this removal leads to an exponential increase in the
number of states, which is generally unavoidable.

5.3.2.2 Clock Invariants

Let X be a finite set of variables ranging over R≥0, called clocks. Let ∆(X ) be a set
of clock invariants. A clock invariant ϕ ∈ ∆(X ) is a clock constraint of the following
form:

ϕ := tr ue | x < c | x ≤ c | ϕ1 ∧ ϕ2

where x ∈ X, c ∈N. Clock invariants restrict the amount of time that can be spent in a
given state without changing to the next state.

5.3.2.3 Clock Valuations

Given a finite set of clocks X, a clock valuation function, ν : X →R≥0 assigning to each
clock x ∈ X a non-negative value ν(x). We note RX

≥0 the set of all clock valuations.
We note ν0 the mapping that associates 0 to each clock. For a time value t ∈ R≥0,
we note ν+ t the valuation defined by (ν+ t)(x) = ν(x)+ t . Given a clock subset
Y ⊆ X , we note ν[Y ← 0] the valuation defined as follows: ν[Y ← 0](x) = 0 if x ∈ Y
and ν[Y ← 0](x) = ν(x) otherwise. Given a clock constraint φ ∈ Φ(X ) and a clock
valuation ν, we say that ν satisfies φ, denoted by ν |= φ and defined formally as
follows:

ν |= x ∼ c ⇐⇒ ν(x) ∼ c

ν |=φ1 ∧ φ2 ⇐⇒ ν(x) |=φ1 ∧ ν(x) |=φ2

ν |= tr ue ⇐⇒ tr ue

Given Y ⊆ X, the projection of ν on Y, written ν⌋Y, is the valuation over Y only
containing the values in ν of clocks in Y. In the same way, it is also possible to say
that for a clock invariant ϕ ∈ ∆(X ) and a clock valuation ν, ν satisfies ϕ, denoted by
ν |=ϕ.

Definition 39 (Timed Automata). A TA is a tuple A = (S, s0,Σ, X ,→t a , Inv,F ) where:

(i) S is a finite set of locations,
(ii) s0 ∈ S is the initial location,

(iii) Σ is a finite alphabet,
(iv) X is a finite set of clock names,
(v) →t a ⊆ S ×Σ×Φ(X )×2X ×S is the finite transition relation,

(vi) Inv : S →∆(X) associates to each location a clock invariant,
(vii) F ⊆ S is a finite set of final locations.
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For a transition (s, a,φ,Y , s′) ∈→t a , we classically write s
a,φ,Y−−−−→ s′ and call s and s′

the source and target locations, φ the guard, a the action or label, Y the set of clocks to
be reset. To execute a TA, we need to track clocks valuations. Furthermore, only legal
locations are visitable, i.e., locations that satisfy ν |= Inv(s) (i.e. valuations that map
clocks to values that satisfy the current state of the invariant). During the execution of
a TA A , a state is a pair (s,ν) ∈ S ×RX

≥0, where s denotes the current location with its
accompanying clock valuation ν, starting at (s0,ν0) where ν0 maps each clock to 0.

Definition 40 (Semantics of TA). The semantics of a TA A is given by a TLTS(A ) =
(Q,q0,Σ,→tlts,QF ) where Q = {(s,ν) ∈ S ×RX

≥0 | ν |= Inv(s)} is the set of states over A

(with initial state q0 = (s0,ν0)), QF = {(s f ,ν) ∈ F ×RX
≥0 | ν |= Inv(s f )} is the set of final

states over A and →t l t s ⊆ Q× (Σ⊎R≥0)×Q is the TLTS transition relation defined by:

(i) Discrete transition: (s,ν)
a−→ (s′,ν′), such that s

a,φ,Y−−−−→ s′, ν |= φ, ν′ = ν[Y ← 0]
and ν′ |= Inv(s′),

(ii) Delay transition: (s,ν)
t−→ (s,ν+ t ) for any t ∈ R≥0, such that ν+ t |= Inv(s).

A run θ of A is a finite sequence of consecutive delay and discrete transitions.
The run is said to be accepting if it starts in s0 with valuation ν0 and ends in a
final location (s f ∈ F ). A run of A is a path ρ of TLTS(A ) starting from the initial
state q0 = (s0,ν0), with delay and discrete transitions alternating along the run: θ

= (s0,ν0)
t0−→ (s0,ν′0)

a1−→ (s1,ν1)
t1−→ (s1,ν′1)

a2−→ (s2,ν2) . . .
tn−1−−−→ (sn−1,ν′n−1)

an−→ (sn ,νn)
where ν0(x) = 0 for every x ∈ X . The timed trace associated with ρ (defined above) is
ρ = ((σ0, t0)(σ1, t1) . . . (σn , tn)) where (σi , ti )0≤i≤n ∈ (Σ×R≥0)n+1. Conversely, we say
that the run θ reads ρ in A .

a, x > 3,  x:= 0 

x < 7 b, y = 9, {x:= 0, y:=0} 

b, x < 10, ∅ 

s0 s1

Figure 5.2: A TA

Example 9. Let A = (S, s0,Σ, X ,→t a , Inv,F ) be the TA depicted in Figure 5.2. A

contains two locations: l0 (initial) and l1. In particular, s0 is the only location to
define an invariant: I (s0) = (x < 7), forcing the TA to exit s0 when x becomes smaller
than 7. s1 has the invariant true (by default, not drawn by I ), allowing time to progress
unboundedly while being in s1. Suppose the current location is s1. The transition

s1
b,(y=9),{x:=0;y :=0}−−−−−−−−−−−−−→ s0 specifies that when the action b occurs and the guard y = 9

holds, this enables the transition, leading to a new current location s0, while resetting
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clock variables x and y. Note that using a location invariant (which specifies when it
may be possible to stay in a given location) is different from putting a constraint as a
guard (which specifies that the transition is enabled only when the constraint holds).

(s0, 
[x = 0.0, 
y = 0.0])

 0.0 

(s1, 
[x = 0.0, 
y = 3.1])

a  3.1  (s0, 
[x = 3.1, 
y = 3.1]) 

 time evolution 

1.9  (s1, 
[x = 1.9, 
y = 5.0])

(s1, 
[x = 1.9, 
y = 5.0])

(s1, 
[x = 5.9, 
y = 9.0])

(s0, 
[x = 0.0, 
y = 0.0])

start
b  4.0  b  ...  

 3.1  5.0  9.0 

Figure 5.3: The run of the timed automaton A in Figure 5.2

Example 10. Figure 5.3 presents a run of the timed automaton A presented in Figure

5.2. A run of A is a path in TLTS(A ) = (s0, [x = 0.0, y = 0.0])
3.1−−→ (s0, [x = 3.1, y =

3.1])
a−→ (s1, [x = 0.0, y = 3.1])

1.9−−→ (s1, [x = 1.9, y = 5.0])
b−→ (s1, [x = 1.9, y = 5.0])

4.0−−→
(s1, [x = 5.9, y = 9.0])

b−→ (s0, [x = 0.0, y = 0.0]) starting from the initial state with
each clock set to 0 and the timed trace θ associated with this non-accepting run is
((a,3.1)(b,5.0)(b,9.0)).

We write L (A ) for the language of A , that is the set of timed traces associated
with an accepting run (L (A ) = L (TLTS(A ))).

Theorem 18. [AD94] TA are closed under union and intersection.

But unfortunately TA are not closed under complement. Let us consider the TA
A in Figure 5.4 to get some intuition about the reason why TA are not closed under
complement. This TA accepts exactly the TT where two a are separated by a one-
time unit. At location s0, when reading a, the automaton can non-deterministically
decide to stay at s0 or to go to location s1 and reset the clock x to 0.

        s1 s2s0

a a a 

a, x:= 0 a, x = 1 

Figure 5.4: A Non complementable TA

Theorem 19. [AD94] TA are not closed under complement.

The emptiness problem for TA is to decide whether a given timed automaton A

accepts at least one TT, that is, if L (A ) ̸= ;.

Theorem 20. [AD94] The emptiness problem for TA is decidable.
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Theorem 21. [AD94] The emptiness problem for TA is PSPACE-Complete.

Theorem 22. [AD94] The problem of universality for TA is undecidable.

The proof of the last theorem [AD94] shows that the problem of deciding whether
a two-counter machine has a recurring computation can be reduced to the univer-
sality problem of TA. Since the recurring computation problem for two-counter
machines is undecidable [FL79], it follows that the universality problem for TA is
undecidable.

5.3.3 Region Equivalence and Region Automaton

A classical construction for the analysis of TA is the region automaton. Since the
number of states in a TA is infinite, it is impossible to build a finite state automaton.
Then, the region automaton abstracts the execution of a TA by merging states that
are considered equivalent [AD94].

Given t ∈ R≥0, we note ⌊t⌋ and f r act(t) the integral and fractional part of t ,
respectively. For a given TA A , we note cx ∈N the maximal constant to which clock
x ∈ X is compared in the guards and invariants of A .

Definition 41 (Clock Equivalence). Two clock valuations ν, ν′ ∈ ν ∈RX
≥0, are clock-

equivalent (denoted by ν ≡ ν′) iff the following conditions are satisfied:
(i) ∀x ∈ X , ν(x) > cx if and only if ν′(x) > cx ,

(ii) ∀x ∈ X , ν(x) ≤ cx implies both ⌊ν(x)⌋ = ⌊ν′(x)⌋ and f r act (ν(x)) = 0 if and only
if f r act (ν′(x)) = 0, and

(iii) ∀x, y ∈ X , such thatν(x)≤ cx andν(y)≤ cy , we have f r act (ν(x))≤ f r act (ν(y))
if and only if f r act (ν′(x)) ≤ f r act (ν′(y)).

The equivalence class generated by ≡ is called a clock region, and we note [ν] the clock
region that contains ν, and C Reg i ons(A ) the set of clock regions for A .

Region equivalence extends to states by defining qA ≡ q ′
A

, where qA , q ′
A

are
states in TLTS(A ) and qA = (sA ,ν), q ′

A
= (s′

A
,ν′), iff (1) sA = s′

A
(i.e., sA and s′

A

both are the same location), (2) ν ≡ ν′ . Regions are the equivalence classes induced
by ≡ on the set of states.

Example 11. For example, consider a TA with two clocks x and y with a maximal
constant that is supposed to be 2 (i.e., cx = 2 and cy = 2). The partitions depicted in
Figure 5.5(a) represent all constraints defined between constants, cx smaller than or
equal to 2 and cy smaller than or equal to 2. Let us consider two valuations ν1 and ν2

which are not equivalent due to time elapsing (i.e., the possible behaviors from ν1 and
ν2 are different). Condition 3 (Definition 41) refines the partition by adding diagonal
lines which represent time elapsing (see Figure 5.5(b)).

Definition 42 (Region Automaton). Let A = (S,s0,Σ,X,→ta, Inv,F) be a TA. The
region automaton RG(A ) of A is the transition system (Q,q0,Σ,→lts,QF ) where states
in Q are pairs (s,r ) so-called symbolic states, where s ∈ S and r ∈ C Reg i ons(A )
(with initial state q0 = (s0, [ν0]) and final states QF = {(s,r )| s ∈ F }), and the transition
relation →lts is defined as follows:
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2 0

!1
!2
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y 

1 
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2 0
a) b)

Region described 
by: 

1 < x < 2
1 < y < 2

0 < frac(x) < frac(y)

Figure 5.5: Two clock valuations ν1 and ν2 (a) and Region with clocks x, y and
constant 2 (b)

(i) Discrete transition: For all a ∈ Σ∪ {ϵ}, there is a transition (s,r )
a−→ (s′,r ′), if,

and only if, there is a A -transition s
a,φ,Y−−−−→ s′, such that ν |= φ and ν′ = ν[Y ← 0]

with ν ∈ r and ν′ ∈ r ′.
(ii) Delay transition: There is a transition (s,r )

ϵ−→ (s,r ′) if, and only if, there is a t

∈ R≥0 and an A -transition (s,ν)
t−→ (s,ν+ t), if ∀ t ′ 0 ≤ t ′ ≤ t , ν+ t ′ |= Inv(s),

with ν ∈ r and ν+ t ∈ r ′ .

Hence, given a TA A and its region automaton RG(A ), we can reduce the
emptiness check for the timed language accepted by A (L (A )) to a reachability
problem in RG(A ).

Theorem 23. [AD94] Checking the reachability of a location in a timed automaton is
a PSPACE-complete problem.

a, x:=0 

d, y > 2 

x < 1 

b, y:=0 

x < 1 

c s0 s1 s2 s3

true true
 

Figure 5.6: TA A

Example 12. Let us consider a TA A depicted in Figure 5.6 (taken from [AD94]) and
region partition depicted in Figure 5.7. The corresponding region automaton RG(A )
is depicted in Figure 5.8. However, only the regions reachable from the initial region
(s0, x = y = 0) are shown. In this example, the location s3 of A is reachable if and only
if one of the states (s3,r ) with a region r is reachable in the finite automaton given in
Figure 5.6. In RG(A ), the path (s0, x = y = 0)

a−→ (s1,0 = x < y < 1)
ϵ−→ (s1,0 < x < y < 1)
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b−→ (s2,0 = y < x < 1)
ϵ−→ (s2, y < x < 1)

c−→ (s3,0 < y < x < 1) leads to location s3 which

implies that, in the TA A , there is an execution (s0,ν0)
t1−→ (s0,ν′0)

a−→ (s1,ν1)
t2−→ (s1,ν′1)

b−→ (s2,ν2)
t3−→ (s2,ν′2)

c−→ (s3,ν3) leading to s3 (for some t1, t2, t3 ∈ R≥0).

x 

y 

1 

1 

2 

Figure 5.7: Clock Region

Contrary to the TLTS associated to a TA, which is potentially infinite, thus
impossible to construct explicitly, the region automaton is finite: the number of
clock regions is bounded by |C Reg i ons(A )| ≤∏

x∈X ((2cx+2)×|X |!×2|X |)), leading to
a number of states for the region automaton bounded by ((2cx+2)|X |×|X |!×2|X |×|S|)
[AD94].

5.3.4 Reachability Problem

The reachability problem is decidable for TA [AD94]. It asks if there exists a path
from its initial state to a given target state. Two algorithms can be used to solve the
reachability problem::sForward Analysis Algorithm: The goal of this algorithm is to iteratively compute

the successors of the initial states and to check whether the state to be reached
is finally computed or not.sBackward Analysis Algorithm: This algorithm aims to iteratively compute the
predecessors of the states to be reached and check whether the state to be
reached is eventually computed or not.

The reachability problem for TA is decidable using the region automaton [AD94],
but the number of regions is usually very large, making this solution impractical. To
avoid using regions and get a more reasonable number of transitions, it is possible
to use a convex union of regions called clock zones [BY04]. This approach is usually
more efficient. It is implemented in classic tools like UPPAAL [UPP], KRONOS
[BDM+98], TEMPO Toolset. [GMP13].

5.3.4.1 The Zone Approach

In a zone graph [BY04], clock zones are used to symbolically represent sets of clock
valuations. To formally define the notion of a clock zone, over a set of clocks X , we
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Figure 5.8: Region automaton associated with the TA A (Figure 5.6)

need to consider the set Φ+(X ) of diagonal clock constraints. Therefore, a clock
zone Z is a convex set of clock valuations described by a diagonal constraint φ ∈
Φ+(X ) such that Z = {ν | ν |=φ}. To have a unified representation for clock zones, a
reference clock x0 is introduced to the set of clocks X , which is always 0. The general
form of a clock zone can be described by the following form:

Z = (x0 = 0) ∧ ∧
0≤i ̸= j≤n

xi −x j ⪯ ci , j

where xi and x j are clocks of X , ci , j is a non-negative integer and ⪯ ∈ {≤,<}.
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x 1
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Figure 5.9: Clock zone Z

Example 13. Figure 5.9 presents the clock zone Z = [[ x1 ≥ 1 ∧ x1 ≤ 4 ∧ x2 ≥ 0 ∧ x2 ≤ 2
∧ x1 −x2 ≤ 2 ∧ x2 −x1 ≤ 0 ]].

Therefore, the forward and backward analysis algorithms described above have
been implemented using symbolic states [BBFL03]. A symbolic state is a pair (s,Z ),
called zones, where s is a location and Z is a clock zone.

Definition 43. Let Z , Z ′ be two clock zones and Y ⊆ X be a finite set of clocks. The
semantics of the intersection, restricting projection, clock reset, inverse clock reset,
time successor and time predecessor on a clock zone can be defined:

(i) Intersection of two clock zones, defined by:sZ ∩Z ′ = {ν | ν ∈ Z ∧ ν ∈ Z ′},
(ii) Restricting projection of a zone, defined by:sZ ⌋Y = {ν | ∃ν′ ∈ Z ∧ ∀x ∈ Y , ν(x) = ν′(x)},

(iii) Clock reset and inverse clock reset of a zone defined by:sZ ↓Y = {ν[Y ← 0] | ν ∈ Z },sZ ↑Y = {ν | ν[Y ← 0] ∈ Z },
(iv) time successor and predecessor of a zone, defined by:sZ ↑= {ν+ t | ν ∈ Z and t ∈ R>0},sZ ↓= {ν− t | ν ∈ Z and t ∈ R>0}.

Notice that the operations time successor, time predecessor, clock reset and its in-
verse, and the standard intersection preserve clock zones [BY04] [AD94]. Some exam-
ples of the operations are presented in Figure 5.10. Given a TA A = (S, s0,Σ, X ,→t a ,
Inv,F ), it is possible to construct a zone graph ZG(A ) such that states of ZG(A )
are zones of A . A zone graph ZG(A ) [LLW95] is similar to the region graph [AD94]
with the difference that each node consists of zones. Given a discrete transition
e=(s, a,φ,Y , s′) ∈→t a , the clock zone post(Z ,e) denotes the set of clock valuations
Z ′ for which the state (s′,Z ′) can be reached from the state (s,Z ) by letting time
elapse and by executing the transition e. The zone (s′,post(Z ,e)) describes the
discrete successor of the zone (s,Z ) under the transition e.
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Figure 5.10: Two clock zones Z1, Z2 and examples of operations on them

5.3.5 The Difference Bound Matrices

An important feature of clock zones is that they can be represented by difference
bound matrices (DBMs) [Dil90] [BY04], which is the most commonly used data
structure for representing clock zones. To get a uniform notation for clock zones
in DBMs, it is necessary to introduce a special clock x0 which is always 0 (X =
X ∪ {x0}). The matrix is indexed by the clocks in X together with the special clock
x0. Furthermore, it is necessary to introduce the domain of bounds. A bound is
an ordered pair (c, l ) ∈ (Z× {<,≤}) ∪ {(∞,<), (−∞,<)}. The symbols < and ≤ are
totally ordered (i.e., < is strictly less than ≤). The ordering of bounds is defined
lexicographically as follows: (c1, l1) ≤ (c2, l2) if either c1 < c2 or c1 = c2 and l1 = l2 =≤,
or (c1, l1) < (c2, l2) if either c1 < c2 or c1 = c2 and l1 =< and l2 =≤ . The addition is
defined as: for every bound b, b + ∞ = ∞. Given two integers c1 and c2, (c1,≤)+(c2,≤)
= (c1 + c2,≤) and (c1,<) + (c2,<) = (c1 + c2,<) or (c1,<) + (c2,≤) = (c1 + c2,<).

Definition 44 (Difference Bound Matrix). A Difference Bound Matrix (DBM) over
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the set of n clocks {x1, x2, . . . , xn} is a (n+1)×(n+1) square matrix of bounds with rows
and columns indexed by {x0, x1, x2, . . . , xn}. The DBM can be represented as follows:

D = (di , j )0≤i , j≤n

where each di , j is of the form (di , j ,⪯), ⪯ ∈ {<, ≤} and di , j ∈ Z∪ {∞,−∞} (i.e., a
bound). Formally, the semantics of DBM D is the clock zone:

Z = (x0 = 0) ∧ ∧
0≤i ̸= j≤n

xi −x j ⪯ di , j

where xi is a clock labelling row i , x j is a clock labelling the column j and the clock
x0 is always equal to 0.

Since the variable x0 is always equal to 0, it can be used for expressing constraints
that only involve a single variable. Thus, di ,0 = (di ,0,⪯) means xi ⪯ di ,0. Similarly,
d0, j = (d0, j ,⪯) means −x j ⪯ d0, j which are rewritten as xi − x0 ⪯ di ,0 and x0 − x j ⪯
d0, j . Further, for each unbounded clock difference xi −x j , di , j = (∞,<), where the
symbol ∞ expresses that no bound exists. Also, for every clock equals itself, xi −xi ,
di , j = (0,≤).

For instance, consider the clock zone:

Z = [[x1 ≥ 1∧x2 > 0∧x2 ≤ 2∧x1 −x2 < 2]]

x1 1 

1 

2 

2 3 4

1 ≤ x1
0 < x2 ≤ 2 
x1 - x2 < 2 

Z

x0 = 0

(0
,<

)  

x1 x2

a) b) 

(-1
,≤

)  

(∞
,<

)  

(2, <)  

(2
, ≤

)  

(∞,<)  

(0
,≤

)  

(0, ≤)  (0,≤)  

x2 

Figure 5.11: a) A clock zone Z and b) Directed weighted graph

That clock zone can be represented by the matrix D (DBM), where xi (resp. x j )
denotes the clock labelling ith row (resp. jth column) of D:

D =


x0 x1 x2

x0 (0,≤) (−1,≤) (0,<)
x1 (∞,<) (0,≤) (2,<)
x2 (2,≤) (∞,<) (0,≤)


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that encodes the following inequalities:


x0 x1 x2

x0 (x0 −x0 ≤ 0) (x0 −x1 ≤−1) (x0 −x2 < 0)
x1 (x1 −x0 <∞) (x1 −x1 ≤ 0) (x1 −x2 < 2)
x2 (x2 −x0 ≤ 2) (x2 −x1 <∞) (x2 −x2 ≤ 0)



=


x0 x1 x2

x0 (0 ≤ 0) (−x1 ≤−1) (−x2 < 0)
x1 (x1 <∞) (0 ≤ 0) (x1 −x2 < 2)
x2 (x2 ≤ 2) (x2 −x1 <∞) (0 ≤ 0)


In Figure 5.11(a) we can see the representation of the clock zone Z . By a slight

abuse of notation, we use the same notations for the DBMs as for clock zones (Z
= [[D]]), writing e.g.

−→
Z as [[

−→
D ]] (time successor zone), where D is a DBM and Z

is a clock zone. It is well known that the representation of a clock zone by a DBM
(Z = [[D]]) is not unique. For instance, if we change 〈d1,0,⪯〉 to (4,<) we obtain an
alternative DBM for the same clock zone, because x1 < 4 is deduced from x1 −x2 < 2
and x2 ≤ 2. To perform such deductions, a clock zone Z = [[D]] can be seen as a
directed weighted graph [Dil90] [BY04], where each clock corresponds to a node,
and each constraint corresponds to a weighted edge, whose weight is represented by
(di , j )0≤i , j≤n . Figure 5.11(b) represents the directed weighted graph for the clock zone
Z = [[x1 ≥ 1∧x2 > 0∧x2 ≤ 2∧x1 −x2 < 2]]. Then, all deductions can be performed
by the composition of the paths.

However, to obtain a unique representation of the zone by its canonical matrix to
implement the operations on clock zones (intersection, clock reset, time successor,
time predecessor, etc.), it is necessary to obtain a canonical form for DBMs [Dil90]
[BY04].

Definition 45 (Canonical Form of DBMs). The canonical form of a DBM can be
represented as follows:

Dc = (di , j )c
0≤i , j≤n ,

such that, for each 0 ≤ i , j , k ≤ n, the constraints di , j ≤ dk, j + di ,k .

The canonical form of a DBM can be computed by applying the Floyd-Warshall
shortest-path algorithm [Dil90].

5.3.5.1 Canonical Form Algorithm

In definition 45, Dc [i , j ] represents the cost of the shortest path in the directed graph
of D from the node with index i to j [Dil90]. Thus, the Floyd-Warshall shortest path
algorithm [Dil90] can be used to compute the canonical form representation of a
DBM. In short, the principle behind the algorithm is that if there is a negative cost
cycle (i.e, a cycle with a cost less than (0,≤)) in the directed graph of a given DBM,
D, a path of arbitrarily small cost can be obtained by repeating the negative cost
cycle (Dc [i , j ] = (−∞,<) then xi −x j < −∞ for each 0 ≤ i , j ≤ n). Therefore, there is
a way to decide whether D has empty clock zones by checking whether a negative
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1 Input: A DBM D = (di , j )0≤i , j≤n

2 Output: A DBM Dc = (di , j )0≤i , j≤n

3 DBM Dc;
4 DBM CanonicalFormOp(DBM D) {
5 int i, j, k;
6 Dc = D;
7 for(k=0; k<Dc.size; k++){
8 for(i=0; i<Dc.size; i++){
9 for(j=0; j<Dc.size; j++){

10 Dc[i,j] = min(Dc[i,j], Dc[i,k] + Dc[k,j]);
11 if (i == j && Dc[i,j] < (0,≤) {
12 Dc[0,0] = (−∞,<);
13 }
14 }
15 }
16 }
17 return Dc;
18 }

Algorithm 5.1: Floyd Warshall Shortest Path Algorithm.

cost cycle occurs during the computation of the shortest path graph using the Floyd-
Warshall shortest path algorithm [Dil90]. Algorithm 5.1 describes the Floyd-Warshall
shortest path algorithm [Dil90] with a check for emptiness. The algorithm works
as follows: at the first iteration, it computes the shortest path among all pairs of
nodes present in the directed weighted graph, with the restriction that only the
node with index 0 (i.e., x0) can be visited as an intermediate node. At the second
iteration, it computes the shortest path among all pairs of nodes with the restriction
that only nodes with index in (0,1) (i.e., x0 and x1) can be visited as intermediate
nodes. Finally, at iteration nth , it computes the shortest path between all pairs of
nodes, using any node in the directed graph of D as an intermediate node. Note that
step 11 checks for negative cost cycles. If a negative-cost cycle is detected, D∗[0,0] is
updated with the value (−∞,<) to signal that D represents the empty region, and
the algorithm is stopped.

5.3.6 Operations on Zones Using DBMs

In the following, we show some algorithms for the basic operations on the DBM
representations of clock zones, which are needed for both the backward and forward
analysis techniques. The implementations presented here are taken from [BY04]
[BY03], but our presentation differs in some details.
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1 Input: Two DBM D = (di , j )0≤i , j≤n and D′ = (di , j )0≤i , j≤n

2 Output: A DBM D′′ = (di , j )0≤i , j≤n

3 DBM D′′;
4 DBM IntersectOperator(DBM D, DBM D′) {
5 int i, j;
6 for(i=0; i<D.size; i++){
7 for(j=0; j<D.size; j++){
8 D′′[i,j] = min(D[i,j], D′[i,j]);
9 }

10 }
11 CanonicalFormOP(DBM D′′);
12 return D′′;
13 }

Algorithm 5.2: Intersection Algorithm.

Intersection

Intersection is one of the most common operations performed on DBMs. Given two
DBMs D = (di , j )0≤i , j≤n and D′ = (d′

i , j )0≤i , j≤n . Calculate the intersection of these two

DBMs D′′ = (d′′
i , j )0≤i , j≤n so that [[D′′]] = D ∩ D′, consists in taking the lower bounds

for each pair of clock differences, i.e. for each 0 ≤ i , j ≤ n, d′′
i , j = mi n(di , j ,d′

i , j ).
However, the intersection operation does not preserve the canonical form of the
DBM results, so D′′ must be canonicalized after the operation. The algorithm 5.2
describes the intersection operation of two DBMs [Dil90]. The algorithm works as
follows: at each iteration, it computes the minimum for each pair of nodes (including
other i ) present in the two-directional weighted graph.

5.3.6.1 Time Successor

This operation computes the time successor of a non-empty canonical DBM D (i.e.,
all clock valuations that can reach D with any delay). Given a canonical DBM D

= (di , j )0≤i , j≤n , computing the time successor of a DBM D′ = (d′
i , j )0≤i , j<n , consists

in removing in D all the upper bounds on the values of the clocks, that is, for each
0 < i ≤ n, d′

i ,0 = (∞,<) and for each 0 < i ≤ n, 0 < j ≤ n, d′
i , j = di , j . The Algorithm 5.3

describes the time successor operation of a DBM [Dil90]. The algorithm works as
follows: it repeatedly removes the upper bounds of all individual clocks, which is
done by replacing all elements in the first column of D′ by (∞,<).

5.3.6.2 Time Predecessor

This operation computes the time predecessor of a non-empty canonical DBM D

(i.e., all clock valuations can reach D with any delay). Given a canonical DBM D =
(di , j )0≤i , j≤n , computing the time predecessor of a DBM D′ = (d′

i , j )0≤i , j<n , consists
in removing in D all the lower bounds on the values of the clocks, that is, for each 0
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1 Input: A DBM D = (di , j )0≤i , j≤n

2 Output: A DBM D′ = (d′i , j )0≤i , j≤n

3 DBM D′;
4 DBM TimeSuccOperator(DBM D) {
5 int i, j;
6 for(i=0; i<D.size; i++){
7 D′[i,0] = (∞,<);
8 }
9 return D′;

10 }

Algorithm 5.3: Time Successor Algorithm.

1 Input: A DBM D = (di , j )0≤i , j≤n

2 Output: A DBM D′ = (d′i , j )0≤i , j≤n

3 DBM D′;
4 DBM TimePredOperator(DBM D) {
5 int i, j;
6 for(i=0; i<D.size; i++){
7 D′[i,0] = (0,≤);
8 }
9 return D′;

10 }

Algorithm 5.4: Time Predecessor Algorithm.

< i ≤ n, d′
0,i = (0,≤) and for each 0 < i ≤ n, 0 ≤ j ≤ n, d′

i , j = di , j . The Algorithm 5.4
describes the time predecessor operation of a DBM [Dil90]. The algorithm works
as follows: it repeatedly removes the lower bounds of all individual clocks, which is
done by replacing all elements in the first column of D′ by (0,≤).

5.3.6.3 Clock Reset

This operation is used to set clocks of a non-empty canonical DBM D to zero. Given
a canonical DBM D = (di , j )0≤i , j≤n and given a set of clocks Y ⊆ X to be reset. Com-
puting the clock reset of Y ⊆ X and a DBM D′ = (d′

i , j )0≤i , j<n such that [[D′]] = ↓Y [[D]],
consists in setting to zero all the upper and lower bounds of the values of clocks
to be reset (Y ⊆ X ), that is, for each 0 ≤ i ≤ n, such that, xi ∈ Y (i.e., xi denotes
the ith clock (row) of the DBM D), (d′

i ,0)0≤i<n = (d′
0,i )0≤i<n = (0,≤) and for each

0 ≤ i , j ≤ n, (d′
i , j )0≤i , j<n = (di , j )0≤i , j<n . The resulting D′ will be in the canonical

form [Dil90]. The Algorithm 5.5 describes the reset clock operation of a DBM [Dil90].
The algorithm works as follows: it repeatedly removes the upper bounds of all clocks
in Y , which is done by replacing all elements in the first row and column of D′ by
(0,≤), (d′

i , j )0≤i , j<n = (d′
0, j )0≤ j<n and (d′

j ,i )0≤i , j<n = (d′
j ,0)0≤ j<n where (d′

0, j )0≤ j<n =

70



1 Input: A canonical DBM D = (di , j )0≤i , j≤n and reset clocks Y ⊆X
2 Output: A canonical DBM D′ = (di , j )0≤i , j≤n

3 DBM D′;
4 DBM ResetOperator(DBM D, Clocks Y ) {
5 int i, j;
6 for(i=0; i<D.size; i++){
7 if (xi ∈ Y ){
8 for(j=0; i<D.size; j++){
9 D′[i,j] = D[0,j];

10 D′[j,i] = D[j,0];
11 }
12 }
13 }
14 return D′;
15 }

Algorithm 5.5: Reset Clock Algorithm.

(d′
j ,0)0≤ j<n = (0,≤).

5.3.7 The Extrapolation Abstractions

The zone-based abstractions described in Section 5.3.4 are important approaches
to the reachability problem of TA [BY04]. A zone graph captures the behavior of
the TA, but such a zone graph is not necessarily finite. Abstraction techniques for
zones are used to reduce the number of reachable zones and obtain a finite zone
graph [Bou04a]. The idea of these abstraction techniques is to remove from the clock
zone those constraints that exceed the bounds used in the guards and invariants.
Therefore, the generated clock zone is larger than the original one. In the last 20
years, there have been many interesting advances in abstraction techniques for TA
to provide coarser abstractions of TA [Bou04a] [BBFL03] [BBLP06]. The abstraction
techniques presented here are taken from [Bou04a] [BBFL03] [BBLP06].

5.3.7.1 Maximal Bounds Abstraction

One of the first works on the zone-based abstraction technique for TA is the so-called
maximal bounds extrapolation (also known as M-extrapolation or normalization,
where M stands for the maximal constant appearing in the constraints of a TA A , i.e.,
cx ) [DT98]. The basic idea of this abstraction is as follows. Given a TA A , a clock zone
Z is extrapolated by the maximal constant (i.e., the maximal bound cx or M(x) of a
clock x ∈ X ) appearing in the guards or invariants with the clock x ∈ X of A . Formally,
it is based on the following equivalence relation. Given two valuations ν and ν′, ≡M

is the equivalence relation defined by ν ≡M ν′ if and only if for all x ∈ X , ν(x) =
ν′(x) or (ν(x) > M(x) and ν′(x) > M(x)). For each clock zone Z , we can describe the
extrapolated clock zone by the abstraction function aM (Z ) = {ν′ | ∃ ν ∈Z , ν≡M ν′}.
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This abstraction function is complete and sounds [BBFL03] with respect to the
reachability problem . But this abstraction is not necessarily used in algorithms
because aM does not preserve the canonical form of clock zones [BBFL03]. The
abstraction actually used is an extrapolation denoted by aE xtr aM such that for all
clock zones Z we have Z ⊆ aE xtr aM (Z ) ⊆ aM (Z ) and aE xtr aM (Z ) is a clock zone.
Given a clock zone Z , aE xtr aM (Z ) is computed as follows:sRemoving all upper bounds higher than M(x) with x ∈ X (i.e., the constraints

of the form x ∼ c and x − y ∼ c where ∼∈ {<,≤}, c ∈N and c > M(x) are elimi-
nated).sLowering all lower bounds higher than M(x) with x ∈ X down to the M(x)
(i.e., the constraints of the form x ∼ c and x − y ∼ c where ∼∈ {>,≥}, c ∈N and
c > M(x), by x > M(x) and x − y > M(x)).

E xtr aM is an extrapolation operator on DBMs, it defines the abstraction func-
tion, aE xtr aM , on zones such that for every clock zone Z , aE xtr aM (Z ) = E xtr aM (D),
where D is the DBM in canonical form which represents the clock zone Z .

Definition 46 (Extrapolation Operator E xtr aM ). Let Z be a clock zone represented
by a DBM in a canonical form D = (di , j )0≤i , j≤n (where di , j = (di , j ,⪯i , j )0≤i , j≤n). For
each clock xi ∈ A , M(xi ) is the maximal bound that appears in the guard and
invariants of A . The extrapolation operator D′ = E xtr aM (D) with D′ = (d′

i , j )0≤i , j≤n

is defined as follows:

d′
i , j =


(∞,<) i f di , j > M(xi )
(−M(x j ),<) i f −di , j > M(x j )
(di , j ,≺i , j ) other wi se

Algorithm 5.6 describes the E xtr aM operation on a DBM [BBFL03]. The algo-
rithm works as follows: it repeatedly removes all upper bounds higher than M(xi )
with xi ∈ X and lowers all lower bounds higher than M(xi ) with xi ∈ X down to the
M(xi ). Note that the E xtr aM operator does not preserve the canonical form of the
DBM.

5.3.7.2 Lower and Upper Maximal Bounds Abstraction

An extension to the maximal bounds abstraction was introduced in [BBLP04]. This
new extension is based on the fact that the maximal lower and upper bounds to
which clocks of a TA are compared often differ. The basic idea is as follows. Given a
TA A , a clock zone Z is extrapolated (i.e., bounded) by two bounds (i.e., the maximal
lower bound L(x) and maximal upper bound U (x) of a clock x ∈ X ) appearing in
the guards or invariants with the clock x ∈ X of A . Naturally, it holds that M(x) =
max(L(x),U (x)). Formally, this new abstraction is based on the following simulation
relation. Given two valuations ν and ν′, ⪯LU is the relation defined by ν ⪯LU ν′

if and only if for all x ∈ X , ν(x) = ν′(x) or L(x) < ν(x) < ν′(x) or U (x) < ν′(x) <
ν(x). For every clock zone Z , we can describe the extrapolated clock zone by the
abstraction function aLU (Z ) = {ν′ | ∃ ν ∈ Z , ν ⪯LU ν′}. This abstraction function
is sound and complete with regards to reachability problem [BBLP04] [BBLP06].
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1 Input: A DBM D = (di , j )0≤i , j≤n and M(xi ) the maximal bound, where xi ∈
X.

2 Output: A DBM D′ = (di , j )0≤i , j≤n.
3 DBM D′;
4 DBM ExtraMOperator(DBM D, List const M) {
5 int i, j;
6 for(i=0; i<D.size; i++){
7 for(j=0; j<D.size; j++){
8 if (i ̸= j && D[i,j] > (M(xi), <)) {
9 D′[i,j] = (∞,<);

10 }
11 else if(D[i,j] < (−M(x j), <)) {
12 D′[i,j] = (−M(x j), <);
13 }
14 }
15 }
16 CanonicalFormOp(DBM D′);
17 return D′;
18 }

Algorithm 5.6: E xtr aM Algorithm

But this abstraction is not used in algorithms because aM does not preserve clock
zones [BBLP04] [BBLP06]. The abstraction actually used is an extrapolation denoted
by aE xtr aLU such that for all clock zones Z we have Z ⊆ aE xtr aLU (Z ) ⊆ aLU (Z ) and
aE xtr aLU (Z ) is a clock zone. Given a clock zone Z , aE xtr aLU (Z ) is computed as
follows:sRemoving all lower bounds higher than L(x) with x ∈ X (i.e., the constraints of

the form x ∼ c and x−y ∼ c where ∼∈ {<,≤}, c ∈N and c > L(x) are eliminated).sLowering all upper bounds higher than U (x) with x ∈ X down to the U (x)
(i.e., the constraints of the form x ∼ c and x − y ∼ c where ∼∈ {>,≥}, c ∈N and
c >U (x) are replaced by x − y >U (x)).

E xtr aLU is an extrapolation operator on DBMs, it defines the abstraction func-
tion, aE xtr aLU , on zones such that for every clock zone Z , aE xtr aLU (Z ) = E xtr aLU (D),
where D is the DBM in canonical form which represents the clock zone Z .

Definition 47 (Extrapolation Operator E xtr aLU ). Let Z be a clock zone represented
by a DBM in a canonical form D = (di , j )0≤i , j≤n (where di , j = (di , j ,⪯i , j )0≤i , j≤n). For
each clock xi ∈ A , L(xi ) is the maximal lower bound and U (xi ) is the maximal upper
bound that appears in a guard or invariants of A . The extrapolation operator D′ =
E xtr aLU (D) with D′ = (d′

i , j )0≤i , j≤n is defined as follows:

d′
i , j =


(∞,<) i f di , j > L(xi )
(−U (x j ),<) i f −di , j >U (x j )
(di , j ,≺i , j ) other wi se
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1 Input: A DBM D = (di , j )0≤i , j≤n, L(xi ) the maximal lower bound (and
U (xi ) the maximal upper bound), where xi0≤i<n ∈ X.

2 Output: A DBM D′ = (di , j )0≤i , j≤n.
3 DBM D′;
4 DBM ExtraLUOperator(DBM D, List const L, List const U) {
5 int i, j;
6 for(i=0; i<D.size; i++){
7 for(j=0; j<D.size; j++) {
8 if (i ̸= j && D[i,j] > (L(xi, <))) {
9 D′[i,j] = (∞,<);

10 }
11 else if(D[i,j] < (−U(x j), <)) {
12 D′[i,j] = (−U(x j), <);
13 }
14 }
15 }
16 CanonicalFormOp(DBM D′);
17 return D′;
18 }

Algorithm 5.7: E xtr aLU Algorithm

Algorithm 5.7 describes the E xtr aLU operation on a DBM [BBFL03]. The algo-
rithm works as follows: it repeatedly removes all upper bounds higher than U (xi )
with xi ∈ X and lowers all lower bounds higher than L(xi ) with xi ∈ X down to the
L(xi ). Note that the E xtr aLU operator does not preserve the canonical form of the
DBM.

5.3.8 Reachability Algoritm

Now, to solve the reachability problem for a considered zone automata, the following
general algorithm 5.8 is used [BY04]: The idea is to make a forward exploration of the
zone graph in some search order (e.g., breadth-first or depth-first search), computing
the set of all zones reachable from the initial configuration (s0,Z0)). It uses two sets
of zones (Passed and Waiting) to explore the zone graph starting from (s0,Z0)). At
each step, if a new zone is obtained from W ai t , it is checked if the new zone is in
Passed , and if not, it is added to Passed and its successors to W ai t . All operations
on used zones are implemented using DBMs.

5.3.9 Timed Bisimulation

The state explosion problem [PT87] is one of the most serious problems encountered
by model checking (notably on RTS, the state space can be huge). The notion of
bisimulation relation [Mil89] has been used to mitigate the state explosion problem
and strong timed bisimulation has been used to reason about the behavior of RTS.
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1 Input: A TA A = (S,s0,Σ,X,→ta,Inv,F) and an initial zone (s0,Z0).
2 Output: All zone states reachable from (s0,Z0).
3 //s ∈ S is a location of A, Z0, Z and Z f are DBM.
4 Zones Passed;
5 Zones W ai t;
6 Zones ReachGeneralAlgo(TA A) {
7 Passed = ;;
8 Waiting = (s0,E xtr a+

LU (Z0)); //for all x ∈ X and ν ∈ Z0, ν(x) = 0
9 while (W ai t ̸= ;){

10 Choose and Remove a zone (s,Z ) from W ai t
11 if foreach (s f ,Z f ) ∈ Passed, s ̸= s f or Z ⊈ Z f {
12 add (s,E xtr a+

LU(Z) to Passed
13 foreach e = (s, a,φ,Y , s′) ∈→t a {
14 if(post(Z ,e) ̸= ;)
15 {
16 add (s′,E xtr a+

LU(post(Z ,e))) to W ai t
17 }
18 }
19 }
20 }
21 return Passed;
22 }

Algorithm 5.8: Algorithm for reachability problem using zones.

Definition 48 (Strong Timed Bisimulation [Cer93]). Let D1 and D2 be two TLTS
over alphabet Σ. Let QD1 (resp., QD2 ) be the set of states of D1 (resp., D2). A strong
timed bisimulation over D1 and D2 is a binary relation R ⊆ QD1

× QD2
such that the

following holds: if qD1
R qD2

then:

(i) Discrete transition: For every qD1

a−→D1 q′
D1

with a ∈Σ, there exists a matching

transition qD2

a−→D2 q′
D2

such that q′
D1

Rq′
D2

and vice versa,

(ii) Delay transition: For every qD1

d−→D1 q′
D1

with d ∈R≥0, there exists a matching

transition qD2

d−→D2 q′
D2

such that q′
D1

Rq′
D2

and vice versa.
Two states qD1

and qD2
are timed bisimilar, written qD1

∼ qD2
, iff there is a timed

bisimulation R such that qD1
R qD2

. D1 and D2 are timed bisimilar, written D1 ∼
D2, if there exists a timed bisimulation relation R over D1 and D2 containing the pair
of initial states. Furthermore, for all qD1

R qD2
, if qD1

∈ QF
D1

then qD2
∈ QF

D2
.

5.3.10 Partition Refinement Algorithm

Based on the fact that the reachability algorithm induces a finite zone graph (see
section 5.3.4), the strong bisimulation can be computed using the well-known parti-
tion refinement algorithm [PT87]. Essentially, the algorithm divides the state space
Q into blocks (i.e., pairwise disjoint sets of states). Starting with an initial partitionΠ
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= Π0 of the state space Q, where all states with the same label form a partition, the
algorithm successively refines these partitions until a stable partition Π is reached.
A partition is stable if and only if elements of Π become equivalence classes of some
equivalence relation, which is a bisimulation.

Remarkably, a bisimulation can induce a pre-stable partition. The algorithm
works as follows: given a partition of states Π and blocks B1, B2 ∈Π, B1 is pre-stable
concerning B2 if B1 ⊆ pr ed(B2) or B1 ∩ pr ed(B2) = ;, where pr ed(B) is the set of
direct predecessors of all the states in B . If B1 is not stable with respect to B2, then B1

can further be partitioned into two sub-blocks B1 ∩ pr ed(B2) and B1 \ pr ed(B2). In
this case, B2 is a splitter of B1. Π is pre-stable if all its blocks are pairwise pre-stable.

In [TY01] such an adaptation is given for TA to compute the time-abstracting
bisimulation [Tri98]. Given a timed automaton A , the idea is to start from an initial
partition Π0 respecting the invariants and guards of A and to refine it successively
so that each block (i.e. the blocks are represented by DBM) is pre-stable with respect
to all its time successors (delay transitions) or with respect to all its action successors
(discrete transitions) for a given action [TY01]. Delay transitions must guarantee
that the time successor continuously traverses backward diagonal time successor
clock zones (e.g., any elapsing time cannot traverse the clock zones from 1 to 3
without traversing 2) and alternates with a discrete transition. Figure 5.12 shows an
example of a delay transition traversing clock zones 1 through 3 (i.e., clocks x and y
are perfectly synchronous). Extensions of the partitioning refinement algorithm for
real-time systems are also described in [HNSY94], [DY96], and [Tri98].

x 

y 

1 

1 

2 

2 

3 

0 3

Figure 5.12: A delay transition traversing the range 0 to 3

5.4 Event Clock Automata

Event clock automata (ECA) [AFH94] are a strict subclass of TA, in which clock resets
are not arbitrary (i.e., each action a is associated with a clock xa that is reset exactly
when the action a occurs). ECA are closed under union and intersection, and they
can be determinized (unlike TA). A ECA over Σ= {a,b} uses two implicit clocks xa ,
xb and ya , yb for each a,b ∈ Σ. Along TT (or TIS) the clock xa measures the time
since the last occurrence (event recording) of the symbol a (xb for the symbol b) and
ya measures the time until the next occurrence (event predicting) of the symbol a
(yb for the symbol b). The set of all (event recording) and (event predicting) clocks
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is denoted by X = {xa , xb , ya , yb | a,b ∈ Σ}. However, ECA is strictly less expressive
than TA [AFH94]. Event Recording Automata (ERA) [AFH94] is a subclass of ECA
that is expressive enough to model TLTS.

5.4.1 Event Clock Automata with Pointwise Semantics

Here, we define formally the notion of event clocks, event clock constraints, event
clock valuations, and ECA with pointwise semantics.

5.4.1.1 Event Clocks

Let Σ = 2P be a finite alphabet of symbols. Let X = {R,P } be a finite set of event
clocks associated to Σ where R = {xp | p ∈Σ}, is the set of event recording clocks and
P = {yp | p ∈Σ}, is the set of event predicting clocks. In what follows, we note z any
recording and predicting clock of X .

5.4.1.2 Event Clock Constraints

Let X be a finite set of event clocks associated to Σ. Let Φ(X ) be a set of clock
constraints over X. A clock constraint φ ∈ Φ(X ) can be defined by the following
grammar:

φ := tr ue | z ∼ c | φ1 ∧ φ2

5.4.1.3 Event Clock Valuations

Let X be a finite set of event clocks. A clock valuation function, ν : X → (R≥0 ∪ {⊥})
assigning to each event clock x ∈ X a value in (R≥0 ∪ {⊥}), where ⊥ denotes the
undefined value. We note (RX

≥0 ∪ {⊥}) the set of all clock valuations. Given an TT
ρ and position i ∈ N≥0, a clock valuation ν(ρ, i ) ∈ (RX

≥0 ∪ {⊥}) over X, specifies the
values of the event clocks in X at position i in ρ.

Given an TT ρ, the valuation of the event recording clock variable xp along a ρ
at position i is:

ν(ρ, i , xp ) =


ti − t j if ∃ j < i such that p =σ j , and

∀k, j < k < i such that p ̸= σk ,

⊥ else

Given a TT ρ, the valuation of the event predicting clock variable yp along a ρ at
position i is:

ν(ρ, i , yp ) =


t j − ti if ∃ j > i such that p =σ j , and

∀k, i < k < j such that p ̸= σk ,

⊥ else

Given a clock constraint φ ∈ Φ(X ), a TT ρ, we say that (ρ, i ) satisfies φ at a
position i , denoted by (ρ, i ) |=φ and defined formally as follows:
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(ρ, i ) |= x ∼ c ⇐⇒ ν(ρ, i , z) ∼ c

(ρ, i ) |=φ1 ∧ φ2 ⇐⇒ ν(ρ, i , z) |=φ1 ∧ ν(ρ, i , z) |=φ2

(ρ, i ) |= tr ue ⇐⇒ tr ue

Definition 49. An ECA in the pointwise semantics is a tuple A = (S,s0,Σ,X, →eca,F),
such that:

(i) S is a finite set of locations,
(ii) s0 ∈ S is the initial location,

(iii) Σ is a finite alphabet. We take Σ= 2P, where P is a finite set of propositional
symbols,

(iv) X is a finite set of clocks,
(v) →eca⊆ S×Σ×Φ(X)×S is a transition relation,

(vi) F = {F1,F2, . . .} is a set of accepting locations (Büchi acceptance condition).

An accepted run θ of A on a TT ρ is a infinite sequence θ = s0
e0−→ s1

e1−→ . . . sn
en−→

. . . where si ∈ S, s0 ∈ S, ei = (si , p,φi , si+1) ∈→eca, (ρ, i ) |=φi and there exists infinitely
many positions j such that s j ∈ Fi for i ≥ 1.

           s0 s1 s2 s3
p q, xp < 2 q, yq < 4 

p, xp < 2 q, 2 < xq < 3 

Figure 5.13: Event Clock Automata

Example 14. Let us consider the ECA of Figure 5.13. This ECA contains 4 locations, s0

is a start location. All edges that are not labeled by clock constraints have, by default,
the trivial clock constraint true. The clock constraint xp < 2 that is associated with the
loop from s1 to itself ensures that each p occurs within 2 time units of the preceding p.
The clock constraint xp < 2 that is associated with the edge from s1 to s2 ensures that
q occurs within 2 time units of the preceding q. A similar mechanism for checking the
value of xq while reading q ensures that the time difference between each q and the
subsequent q is always greater than 2 and less than 3. The clock constraints yq < 4
that is associated with the edge from s2 to s3 ensures that q must occurs within 4 time
units.

Theorem 24. [AFH94] The ECA with pointwise semantics are closed under all
boolean operations.

Theorem 25. [AFH94] The emptiness problem for ECA with pointwise semantics is
decidable and PSPACE-Complete.

Theorem 26. [AFH94] The problem of universality for ECA with pointwise semantics
is decidable and PSPACE-Complete.

78



5.4.2 Event Clock Automata with Continuous Semantics

Now, we define formally the notion of ECA with continuous semantics. Here, we
use, ECA with some changes regarding the definition done in [RS97] (and 5.4.1).
The main changes are: (1) labeled each location in ECA with atomic propositional
Σ= 2P, (2) labeled each location in ECA with event recording and event predicting
invariants, (3) labeled the constraints with event recording and event predicting
clocks and (3) worked with TIS instead of TT.

5.4.2.1 Event Clocks

The definition of event clocks associated to Σ = 2P is as in pointwise semantics
5.4.1 (event recording and event predicting clocks denoted by X = {xp , yp | p ∈P}).
Thus, the value of a clock is the time elapsed since its last reset. However, when
we use continuous time, there is not always a last reset, e.g. when the reset holds
in an open interval. For this case, we will use non-standard clock values of the
form υ+, intuitively meaning that the clock was reset υ units before. The set of
non-standard real numbers, noted R+

≥0, is the set of {υ,υ+ | υ ∈ R≥0}, ordered by
<ns as the following: υ1 <ns υ+2 iff υ1 ≤ υ2. The addition is commutative, and
υ+1 +υ2 = (υ1 +υ2)+. In what follows, we note z any recording and predicting clock of
X .

5.4.2.2 Event Clock Invariants

Let X be a finite set of event clocks ranging over R≥0. Let ∆(X ) be a set of event
clock invariants. An event clock invariant ϕ ∈ ∆(X ) is a clock constraints that can be
defined by the following form:

ϕ := tr ue | z < c | z ≤ c | ϕ1 ∧ ϕ2

where z ∈ X, c ∈N.

5.4.2.3 Event Clock Constraints

The definition of event clock constraints is as in pointwise semantics 5.4.1.

5.4.2.4 Event Clock Valuations

Let X be a finite set of event clocks. A clock valuation function, ν : X → (R≥0 ∪ {⊥})
assigning to each event clock x ∈ X a value in (R≥0 ∪ {⊥}), where ⊥ denotes the
undefined value. We note (RX

≥0 ∪ {⊥}) the set of all clock valuations. Given an TIS ρ
and time t ∈ R≥0, a clock valuation ν(ρ, t ) ∈ (RX

≥0 ∪ {⊥}) over X, specifies the values of
event clocks in X at time t in ρ. Given an TIS ρ, the valuation of the event recording
clock variable xp along a ρ at time t is:
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ν(ρ, t , xp ) =



t − r i f p ∈ ρ(t − r ), r > 0, and
∀r ′,0 < r ′ < r such that p ∉ ρ(t − r ′),

(t − r )+ i f ∀r ′ > r, ∃r ′′,r < r ′′ < r ′ such that p ∈ ρ(t − r ′′), and
∀r ′,0 < r ′ ≤ r such that p ∉ ρ(t − r ′)

⊥ i f ∀r,0 < r ≤ t such that p ∉ ρ(t − r )

Given a TIS ρ, the valuation of the event recording clock variable yp along a ρ at
time t is:

ν(ρ, t , yp ) =



t + r i f p ∈ ρ(t + r ), r > 0, and
∀r ′,0 < r ′ < r such that p ∉ ρ(t + r ′),

(t + r )+ i f ∀r ′ > r, ∃r ′′,r < r ′′ < r ′ such that p ∈ ρ(t + r ′′), and
∀r ′,0 < r ′ ≤ r such that p ∉ ρ(t + r ′)

⊥ i f ∀r,0 < r ≤ t suchthat p ∉ ρ(t + r )

Definition 50. An ECA in the continuous semantics is a tuple A = (S,s0,Σ,X,γ, Inv,
→eca,F), such that:

(i) S is a finite set of locations,
(ii) s0 ∈ S is the initial location,

(iii) Σ is a finite alphabet. We take Σ= 2P, where P is a finite set of propositional
symbols,

(iv) X is a finite set of clocks,
(v) γ : S →Σ is a function which labels each location s ∈ S with the set of proposi-

tions that are true in that location,
(vi) Inv : S →Φ(C) is a labeling function assigning a clock constraint to each loca-

tion s ∈ S, where Φ(C) denote the set of clock constraints and C denote the set of
event clocks,

(vii) →eca⊆ S×S is a transition relation,
(viii) F ⊆ S is a set of accepting locations.

An ECA A accepts an TIS ρ, if there exist an accepted infinite r un θ = (s, I ) such
that the following conditions hold: the run starts in a starting location s0 ∈ S, the run
θ consists of an infinite sequence of locations s and an infinite sequence of intervals
I that cover [0,∞), where (s0, I0) → (s1, I1) → (s2, I2) · · ·(sn−1, In−1) → (sn , In) → ···
with si ∈ S, and Ii ∈ I , for all i > 0 there is a transition in →eca of the form (si−1, si ),
such that γ(θ(t)) = ρ(t) and ν(ρ, t) |= Inv(θ(t)) for all t ∈ [0,∞), and if there exist
infinitely many i ≥ 0, such that si ∈ F is a Büchi accepting state that occurs infinitely
often in θ. The timed language L (A ) defined by the ECA A consists of all TIS ρ
that A accepts.

Example 15. Let us consider the railroad crossing gate problem that is taken from
[HL94]. Let us assume that the train signals its approaching of the gate and imposes
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Figure 5.14: Labelled Event Clock Automata from [HL94]

that the gate down before 2 time units. Also, it is assumed that the gate takes at least 1
time unit to go from up to down. The ECA for the railroad crossing gate is considered
in Figure 5.14. On approaching the gate, the clocks are set to zero, and in the location
s0 the proposition is Up. When the train has signaled its approaching, the automaton
evolves to the location s1, which is annotated by the constraint yDown < 2 (gate down
before 2 time units). In the location s2, which is annotated by the proposition Down
and the constraint xUp ≥ 1 imposing that the gate takes at least 1 time unit to go
from location Up to location Down. When the train has signaled its rising (out) the
automaton evolves to the location s3, which is annotated by the constraint yDown ≤ 2,
imposing that the gate takes at most 2 time unit to go up.

Theorem 27. [AFH94] The ECA with continuous semantics are closed under all
boolean operations.

Theorem 28. [AFH94] The emptiness problem for ECA with continuous semantics is
decidable and PSPACE-Complete.

Theorem 29. [AFH94] The problem of universality for ECA with continuous seman-
tics is decidable and PSPACE-Complete.

5.5 Recursive Event Clocks Automata

The event clock values are deterministic, and thus ECA is determinizable, which
makes language inclusion decidable and thus allows refinement based development
[AFH94]. However, the expressiveness of ECA is rather weak. Therefore, [Ras99,
HRS98] introduced the notion of recursive event. In a recursive event model, the
reset of an event clock xB is decided by a lower-level automaton (or formula) B.
Thus, when B visits monitored places (or transitions), it resets xB . Symmetrically,
prediction clocks of the form yB measure the time until B can next visit one of
its monitored locations (or transitions). So no automaton can reset its clocks. In
particular, an automaton of level 0 has no sub-automatons, so no clock. RECA can
be determinized and thus complemented: They are fully decidable [Ras99, HRS98].
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They are quite expressive, since they can express the logic MITL. [AFH96], but less
expressive than TA (otherwise we would lose full decidability).

5.5.1 Event Clocks

Let B be a lower-level automaton. Let X = {R,P } be a finite set of event clocks associ-
ated to the lower-level automaton B where R = {xB | B is a lower-level automaton},
is the set of event recording clocks and P = {yB | B is a lower-level automaton}, is the
set of event predicting clocks. Here, we will use non-standard clock values, as in con-
tinuous semantics 5.4.2. In what follows, we note zB any recording and predicting
clock of X associated to the lower-level automaton B.

5.5.2 Event Clock Invariants

Let B be a lower-level automaton. Let X be a finite set of event clocks ranging over
R≥0. Let ∆(X ) be a set of event clock invariants. An event clock invariant ϕ ∈ ∆(X ) is
a clock constraints that can be defined by the following form:

ϕ := tr ue | zB < c | zB ≤ c | ϕ1 ∧ ϕ2

where zB ∈ X, c ∈N.

5.5.3 Event Clock Constraints

Let B be a lower-level automaton. Let X be a finite set of event clocks associated to
Σ. Let Φ(X ) be a set of clock constraints over X. An event clock constraint φ ∈Φ(X )
can be defined by the following form:

φ := tr ue | zB ∼ c | φ1 ∧ φ2

where zB ∈ X, c ∈N, and ∼ ∈ {<, >, ≤, ≥, =}.

5.5.4 Event Clock Valuations

Let B be a lower-level automaton. Let X be a finite set of event clocks. A clock
valuation function, ν : X → (R≥0 ∪ {⊥}) assigning to each event clock x ∈ X a value in
(R≥0 ∪ {⊥}), where ⊥ denotes the undefined value. We note (RX

≥0 ∪ {⊥}) the set of all
clock valuations. Given an TIS ρ and time t ∈ R≥0, a clock valuation ν(ρ, t ) ∈ (RX

≥0 ∪
{⊥}) over X, specifies the values of event clocks in X at time t in ρ.

Given a TIS ρ and lower-level automaton B, the valuation of the event recording
clock variable xB along a ρ at time t is:

ν(ρ, t , xB) =


t − r if r = max{t ′ < t | (t ′,ρ) ∈L +(B)} exists
(t − r )+ else, if r = sup{t ′ < t | (t ′,ρ) ∈L +(B)} exists
⊥ else
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Given an TIS ρ and lower-level automaton B, the valuation of the event record-
ing clock variable yp along a ρ at time t is:

ν(ρ, t , yB) =


l − t if l = min{t ′ > t | (t ′,ρ) ∈L +(B)} exists
(l − t )+ else, if l = inf{t ′ > t | (t ′,ρ) ∈L +(B)} exists
⊥ else

Definition 51. A RECA A of level l ∈ N is a tuple A = (S,S0,Σ,X,γ, Inv,→reca,M,F),
such that:

(i) S is a finite set of locations,
(ii) S0 ⊆ S are the initial locations,

(iii) Σ is a finite alphabet. We take Σ= 2P, where P is a finite set of propositional
symbols,

(iv) X is a finite set of clocks, of the form xB or yB , with B a lower-level RECA,
(v) γ: (S ∪→r eca) →Σ is a labelling function,

(vi) Inv : (S ∪→r eca) →Φ(C) gives the guard or invariant,
(vii) →r eca⊆ S×S are the transitions.

(viii) M ⊆ (S ∪→r eca) is the set of monitored locansitions or transitions: when the
automaton visits them, it resets its two associated clocks xB , yB .

(ix) F is an acceptance condition.

Definition 52. A run θ of a RECA A is an TIS of alternating transitions and locations
(ζ0, s1,ζ1, s2, . . . , I ), such that:

(i) The run starts from an initial location: ζ0 ∈ S0 ×S,
(ii) The run follows discrete transitions: ζi = (si , si+1) ∈→r eca ,

(iii) The clock constraints (invariant or guard) are satisfied by the valuation of the
clocks (defined below): ∀t ∈R≥0,ν(ρ, t ) |= Inv(θ(t )).

(iv) It satisfies the acceptance condition.

Definition 53. The TIS ρ of a run θ, noted γ(ρ), is the pair (γ(s), I ).

Definition 54. A accepts an TIS ρ at t , if there is a run θ for ρ that visits a monitored
location at t .

Example 16. Let us consider the RECA of the Figure 5.15. This RECA contains
two automata, the main automaton contains two locations, s0 is a start location.
The constraints xB < 3 decorating the edge starting from s1. The sub-automaton B

contains two locations, q0 is a start and monitored location than when B visits q0,
it resets xB . The atomic proposition p decorating the edge starting from q1. On the
other hand, the atomic proposition ¬p decorating the edge from q1 to q0.

Theorem 30. [Ras99, HRS98] The RECA are closed under all boolean operations.

Theorem 31. [Ras99, HRS98] The emptiness problem for RECA is decidable and
PSPACE-Complete.

Theorem 32. [Ras99, HRS98] The problem of universality for RECA is decidable and
PSPACE-Complete.
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Figure 5.15: Recursive Event Clock Automata

5.6 Distributed Timed Automata

Distributed Timed Automata (DTA) [Kri99, ABG+08] consist of several locals TA,
called processes. Each process has its clocks. The clocks of a process evolve syn-
chronously, but independently of the clocks of the other processes. The idea is that
the clocks of the same process are all computed from the same hardware clock. A
clock can be read by any process, but can only be reset by its owner process. The
homonymous DTA of [DL07] work differently: they model processes whose exe-
cution is interleaved by a scheduler. Thus, only one process increases its (perfect)
clocks at a time. They are a subclass of stopwatch automata. The product of DTA is
studied in [ABG+08]. Instead, their product is first computed, giving rise to the class
of Timed Automata with independent clocks (icTA).

Definition 55. A DTA is a tuple D = (Proc,A ,π), such that :
(i) Proc is a non-empty, finite set of process labels.

(ii) A is an indexed set of TA (see Definition 5.3.2), A = (Aq)q∈Proc.
(iii) π :

⋃
q∈Proc Xq → Proc maps each clock to its owner process.

where Aq can only reset its own clocks and Aq = (Sq,s0
q,Σq,Xq,→ta, Iq,Fq) are TA.

Note that a process can read a clock of another process since the Xq need not
be disjoint. In [ABG+08], DTA are not much studied. Instead, their product is
first computed, giving rise to the class of TA with independent clocks (icTA). icTA
assume a signature. A signature is a pair (Proc,P), where Proc is a nonempty finite
set of process labels, and P is a finite set of propositional symbols, from which we
define Σ= 2P.

5.6.1 Timed Automata with Independent Clocks icTA

In [ABG+08], DTA are not much studied. Instead, their product is first computed,
giving rise to the class of icTA. icTA were described in [ABG+08] and are neither
determinizable nor complementable. Their emptiness problem can be solved using

84



the region construction [ABG+08], but their universal and inclusion problems are
undecidable.

Definition 56 (icTA [ABG+08]). An icTA is a pair A = (B,π) over Proc where B is a
TA and π : X → Proc maps each clock to a process.

Definition 57 (Rates [ABG+08]). A rate is a tuple τ = (τq)q∈Proc of local time functions.
Each local time function τq maps the reference time to the time of process q, i.e,
τq : R≥0 −→ R≥0. The functions τq must be continuous, strictly increasing, divergent,
and satisfy τq (0) = 0.

Note that the reference time is arbitrary, and thus not meaningful.

Definition 58. Given a clock valuation ν : X →R≥0, a rate τ, and two reference times
t1 > t2, the valuation ν+ (t1 − t2) maps x to ν(x)+τπ(x)(t1)−τπ(x)(t2).

The operational semantics of an icTA with pointwise semantics has been associ-
ated to a TLTS (i.e., a single-timed semantics [ABG+08]).

Definition 59. Given an icTA A , a finite run of A for τ ∈ Rates is a path ρ of
TLTS(A ) starting from the initial state q0 = (s0,ν0), with delay and discrete transi-

tions alternating along the path: ρ = (s0,ν0)
t1,a1−−−→ (s1,ν1)

t2,a2−−−→ (s2,ν2) . . . (sn−1,νn−1)
tn ,an−−−→ (sn ,νn) where ∀ 0 ≤ i ≤ n, si ∈ S and ∀ 1 ≤ j ≤ n, t j ∈ R≥0 and w = a j ∈ Σ. A

finite run of an icTA A over an untimed word is called an accepting run, iff sn ∈ F
and w ∈ L (TLTS(A )).

In [ABG+08] (p. 128) has been proved that L (TLTS(A )) = L∃(A ), where L∃(A )
is the existential language which is defined as L∃(A ) =

⋃
τ∈Rates L (A ,τ) and the

universal language is defined as L∀(A ) =
⋂
τ∈Rates L (A ,τ). L (A ,τ) is defined as

the set of untimed words σ ∈Σ∗ of accepting runs of A for τ.

Definition 60. The language L (B,τ) is the set of TT of accepting runs of B for τ.

a, 0 < x  < 1 
∧ 0< y < 1 

So

p
q

b, y ≤  1 ≤ x pS1

S2

S1

q

a, 0 < x  < 1 
∧ 0< y < 1 

p
q b, y = 1,  x < 1 pq

T1

T2

b, y ≤  1 ≤ x 
pq

c, x < 1 < y qp

Figure 5.16: Example of an icTA B from [ABG+08]

Example 17. Let us consider the icTA B of the Figure 5.16. This icTA B contains the
set of processes {p, q}, the automaton contains 6 locations, Σ = {a,b,c}, s0 is the initial
location, and also we assume π(x) = p and π(y) = q. If both clocks are completely
synchronized, they follow the same local clock rate (i.e, τp = τq ), then the runs are
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those of a standard TA. If the clocks are synchronized, then the language is L (B, i d) =
{a,b, ab}, where i d is to identify onR≥0 for all p ∈Pr oc. If the clock y runs slower than
clock x (i.e, τ′q ≤ τ′p ), the language is L (B,τ′) = {a, ab,b}. The existential language is
L∃(B) = {a, ab,b,c} and the universal language is L∀(B) = {a, ab}.

5.7 Wrap up

This chapter presents the necessary background on distributed and real-time tempo-
ral formalisms that will be used in this thesis. We have reviewed the definition of the
main formalisms proposed in the literature for modeling and specifying distributed
and real-time systems. As we have already mentioned, distributed and real-time
systems can be modeled using discrete and dense time semantics. In this thesis, we
focus on the more interesting case where time is modeled by dense time semantics.
In particular, we focus on the pointwise and continuous semantics. After defining the
two time semantics, we reviewed the modal and real-time temporal logics. Then we
reviewed the formalism of TA and its extensions (i.e., ECA, DTA, icTA).
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Part II

Contributions and Results
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“The eternal mystery of the world is its comprehensibility.”

— Albert Einstein
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In this chapter, we define the formalisms of Distributed Event Clock Automata
(DECA) and (Recursive) Distributed Event Clock Temporal Logic (DECTL) in the
context of TIS for DRTS. DECA is a variant of RECA inspired by Distributed Timed
Automata (DTA) and Timed Automata with Independent Clocks (icTA) and proposed
by [ABG+08, DL07, Kri99] to model DRTS. In DECA and DECTL, the clocks can
advance independently if they are in different processes. DECA are closed under all
boolean operations. Also, the emptiness and universality problems are decidable,
allowing stepwise refinement. We have chosen to develop the details in continuous
semantics because we will relate the result obtained in this chapter to the logics
EventClockTL [HRS98]. Satisfiability and validity problems for DECTL are decidable.
This logic can be model-checked by translating a DECTL formula into a DECA
automaton.

This chapter is structured as follows. In section 6.1, we address the limitation
presented in the abstract of this thesis and introduce Distributed Event Clocks
(DEC). We extend Recursive Event Clock Automata (RECA) with such distributed
(a.k.a. independent) event clocks, resulting in Distributed Recursive Event Clock
Automata (DECA). We will show that DECA are determinizable, i.e. closed under
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complementation, and thus that their language inclusion problem is decidable
(more precisely, PSPACE-complete). We also show the decidability and regularity of
their universal languages. In section 6.2 we study the corresponding timed languages
of DTA and icTA. In section 6.3 we extend EventClockTL with distributed clocks. This
gives us the (Recursive) Distributed Event Clock Temporal Logic (DECTL), which
we show to be PSPACE-complete. In section 6.4 we present some scenarios of
distributed real-time systems for DECA and DECTL. Finally, in section 6.5 we show
the strengths and weaknesses of DECA and DECTL.

6.1 Distributed Event Clock Automata

In this section, we focus on restoring full decidability of icTA [ABG+08], we use
event clocks [AH91]. For expressiveness, we use RECA [HRS98] with independent
clocks [ABG+08]. The event clock xq

A
(or y q

A
) denote records the time since the last

(resp. next) time that the automaton A could visit a monitored state or transition,
measured in the local time of process q .

6.1.1 Distributed Event Clocks

The definition of Distributed Event Clocks (DEC) is the same as for RECA 5.5, but
each clock is associated with a process (i.e., Pr oc = {p, q, . . .} is a set of processes).
Let B be a lower-level automaton. Let Pr oc be a set of processes. Let X = {R,P }
be a finite set of DEC associated with the lower-level automaton, B where R =
{xq

B
| B is a lower-level automaton and q ∈ Pr oc}, is the set of Distributed Event

Recording Clocks (DERC) and P = {y q
B

| B is a lower-level automaton and q ∈ Pr oc},
is the set of Distributed Event Predicting Clocks (DEPC). Here, we will use non-
standard clock values, as in RECA 5.5. In the following, we note zq

B
each recording

and predicting clock of X associated with the lower-level automaton B, measured
in the local time of the process q .

6.1.2 Distributed Event Clock Invariants

Let B be a lower-level automaton. Let Proc be a set of processes. Let X be a finite
set of DEC ranging over R≥0. Let ∆(X ) be a set of distributed event clock invariants.
Distributed event clock invariants are event clock constraints of the following form:

ϕ := tr ue | zq
B
< c | zq

B
≤ c | ϕ1 ∧ ϕ2

where zq
B
∈ X, c ∈N and q ∈ Proc.

6.1.3 Distributed Event Clock Constraints

Let B be a lower-level automaton. Let Proc be a set of processes. Let X be a finite
set of DEC associated to Σ. The set Φ(X ) of distributed event clock constraints over
the set of clocks X is given by the following grammar:
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φ := tr ue | zq
B
∼ c | φ1 ∧ φ2

where zq
B
∈ X, c ∈N, ∼ ∈ {<, >, ≤, ≥, =} and q ∈ Proc.

6.1.4 Distributed Event Clock Valuations

Let B be a lower-level automaton. Let X be a finite set of event clocks. A clock
valuation function, ν : X → (R≥0 ∪ {⊥}) assigning to each event clock x ∈ X a value in
(R≥0 ∪ {⊥}). Given an TIS ρ, a rate τ and time t ∈ R≥0, a clock valuation ν(ρ, t ,τ) ∈
(RX

≥0 ∪ {⊥}) over X, specifies the values of distributed event clocks in X at time t ,
along ρ on the rate τ.

Given an TIS ρ, the valuation of the DERC variable xq
B

along a ρ at time t and
on the rate τ is:

ν(ρ, t ,τ, xq
B

) =


τq (t )−τq (r ) if r = max{t ′ < t | (t ′,ρ) ∈L +(B,τ)} exists
(τq (t )−τq (r ))+ else, if r = sup{t ′ < t | (t ′,ρ) ∈L +(B,τ)} exists
⊥ else

The definition for DEPC is symmetric.

ν(ρ, t ,τ, y q
B

) =


τq (l )−τq (t ) if l = min{t ′ > t |(t ′,ρ) ∈L +(B,τ)} exists
(τq (l )−τq (t ))+ else, if l = inf{t ′ > t |(t ′,ρ) ∈L +(B,τ)} exists
⊥ else

Definition 61. A Distributed Recursive Event Clock Automaton (DECA) is a pair
(A ,π) where A is a RECA (see Definition 5.5) and π : X → Proc maps each clock to a
process.

For better readability, we write the owner process in the clock name: π(xq
A

) = q .

Definition 62. A run θ of a DECA A for a rate τ is a pair of sequences (s, I ) where s
gives an alternation of transitions and locations ζ0, s1,ζ2, s2, . . ., and I is an interval
sequence, such that:

(i) The run starts from the initial state: ζ0 ∈ S0 ×S.
(ii) For all i > 1, the run follows a discrete transition: ζi = (si , si+1) ∈→deca

(iii) The clock constraints (invariant or guard) are satisfied by the valuation of the
clocks defined above: ∀t ∈R≥0,ν(ρ, t ,τ) |= Inv(θ(t )).

(iv) It satisfies the acceptance condition, e.g. it visits infinitely often an accepting
location.

The TIS of a run θ = (s, I ) of a DECA A , noted γ(θ) is the pair (γ(s), I ). We say
that A accepts an TIS ρ at t with τ, if there is a run θ for an equivalent of ρ that visits
a monitored location (or transition) at t . This is noted by (t ,ρ) ∈L +(A ,τ), its timed
language. This time t will be used to reset the associated clocks xq

B
above.
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Figure 6.1: Example of DECA from [ABG+08]

Example 18. The example of Figure 6.1 from [ABG+08] is in fact both a DECA and
an icTA A over Proc = {p, q}, and the set of propositions P = {a,b,c}. States have
an empty labelling. Both clocks are reset by the initial monitored transition of B.
After this, they may diverge. The existential timed language, here, is read from the
automaton:

L∃(A , p) = ITL1({(a, t p
1 ) | 0 < t p

1 < 1}∪ {(b, t p
1 ) | t p

1 ≥ 1}∪ {(c, t p
1 ) | 0 < t p

1 < 1}

∪{(a, t p
1 ), (b, t p

2 ) | 0 < t p
1 < 1∧ t p

1 < t p
2 })

L∃(A , q) = ITL({(a, t q
1 ) | 0 < t q

1 < 1}∪ {(b, t q
1 ) | 0 < t q

1 ≤ 1}∪ {(c, t q
1 ) | t q

1 > 1}

∪{(a, t q
1 ), (b, t q

2 ) | 0 < t q
1 < 1∧ t q

1 < t q
2 ≤ 1})

Here, all universal timed languages are empty: L∀(A , p) = ; = L∀(A , q). For
instance, we cannot have (a, ta) ∈L∀(A , p), because there are some τ where the time
of q increases steeply, and gets over 1 before the time of p could reach ta . However, the
universal untimed language L∀(A ) is {a, ab}.

6.1.5 Multi-Timed Languages of DECA

DECA inherit the main property of RECA: They are determinizable. Determinization
preserves the τ-wise, existential and universal languages, and there are closures over
boolean operations. The theorems below are valid for the finite version, but also
for the infinite version, e.g. for Büchi automata, which are determinized to a parity
automaton [Pit06]. For better readability, we use the notations ν and ν(ρ, t ,τ) to
denote distributed event clock valuations.

1ITL will add the missing intervals between time points.
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Definition 63. A DECA A is deterministic iff all the following conditions holds:
(i) A has exactly one initial location {s0} = S0 and,

(ii) It has no ϵ-transitions: There are no two successive locations s1 → s2, with the
same labeling: γ(s1) = γ(s1, s2) = γ(s2) and,

(iii) Any two distinct successor locations s2 ̸= s3, s1 → s2, s1 → s3 with same labeling:
γ(s2) = γ(s3) and γ(s1, s2) = γ(s1, s3), have mutually exclusive clock constraints:
ν⊭ Inv(s1, s2)∧ Inv(s1, s3).

Definition 64. A DECA A is complete iff: for any symbol σ ∈Σ, any clock valuation
ν, and for any location s ∈ S there is a successor location s1 ∈ S with γ(s1) = σ and
ν |= Inv(s1).

Therefore, if A is a complete DECA, then for every TIS ρ there is at least one
accepting run θ of A . The determinism ensures that at any time t during a run,
the choice of the next state is uniquely determined by the current location of the
automaton and (ρ,τ). Note that we have imposed a disjoint label from each state
to the next to ensure that the time at which to leave a state is unique and given
by ρ. Therefore, there is at most a single run for each ρ. Below is a proof of the
construction of a deterministic Rabin (DR) A (DR(A )) from a DECA A . This proof
is an adaptation of the construction of RECA [HRS98].

Theorem 33. For any DECA A , we construct a DR B ( B = DR(A )) that accepts the
same language.

Proof. Given A , we construct the DR B = DR(A ) as follows:
(i) The set of locations of B is the set of non-empty subsets of locations of A

with the same labelling, that is {s1, s2, · · · , sn} ∈ SB iff :
(a) n ≥ 1,
(b) for all i , 1 ≤ i ≤ n: si ∈ SA ,
(c) for all i , j such that 1 ≤ i < j ≤ n, we have that γA (si ) = γA (s j ).

(ii) The set of starting location of B is the subset of locations that contains only
initial location of A , that is, q = sB

0 where q ∈ SB
0 , iff:

(a) for all s ∈ q , where s ∈ SA
0 ,

(b) it does not exist a location q ′ with
i. γB(q ′) = γB(q),

ii. for all s ∈ q ′, then s ∈ SA
0 ,

iii. q ⊂ q ′.
(iii) The set of propositions used in B is the same as the set of propositions used

in A : ΣB = ΣA ,
(iv) The set of clocks used in B is the same as the set of clocks used in A , XB =

XA .
(v) The labeling function γB(q) = γA (s) with s ∈ q , for all q ∈ SB . The locations q

∈ SB are labelled with the same labels as in A .
(vi) The labeling function for a transition relation (q1, q2) ∈ →B

deca and (s1, s2) ∈
→A

deca , γB((q1, q2)) = γA ((s1, s2)) with s1 ∈ q1 and s2 ∈ q2, for all (q1, q2) ∈
→B

deca ⊆ SB ×SB . The transitions (q1, q2) ∈→B
deca ⊆ SB ×SB are labelled with

the same labels as in A .
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(vii) The invariant clock constraint i nvB(q) =
∧

i nvA (s) with s ∈ q , for all q ∈
SB . The locations q ∈ SB are assigned with the conjunction of all the clock
constraints of s ∈ q .

(viii) The invariant clock constraint for a transition relation (q1, q2) ∈ →B
deca and

(s1, s2) ∈→A
deca , i nvB((q1, q2)) =

∧
i nvA ((s1, s2)) with s1 ∈ q1 and s2 ∈ q2, for

all (q1, q2) ∈→B
deca ⊆ SB ×SB . The transitions (q1, q2) ∈→B

deca ⊆ SB ×SB are
assigned with the conjunction of all the clock constraints of s1 ∈ q1 and s2 ∈ q2.

(ix) A transition relation, we define (q1, q2) ∈→B
deca ⊆ SB × SB iff:

(a) for all s2 ∈ q2, there exists s1 ∈ q1 such that, (s1, s2) ∈→A
deca ; the locations

in q2 are →A -successors of locations in q1,
(b) for all s2 ∈ SA such that γA (s2) = γB(q2) and there exists s1 ∈ q1 with

(s1, s2) ∈ →A
deca , we have s2 ∈ q2, i.e. q2 is the maximal set of locations

that share the label of q2 and are →A
deca-successors of a location of q1.

(x) A monitored location q ∈ SB belongs to the set MB of monitored transitions
iff there exists a location of A in q that is monitored, i.e. q ∈ MB iff there exists
s ∈ q such that s ∈ MA .

(xi) A monitored transition (q1, q2) ∈ →B
deca ⊆ SB × SB belongs to the set MB

of monitored locations iff there exists a transition of A in (q1, q2) that is
monitored, i.e. (q1, q2) ∈ MB iff there exists s1 ∈ q1 and s2 ∈ q2 such that (s1,
s2) ∈ MA .

(xii) The accepting condition FB = {(L1,U1, . . . ,L2n ,U2n)} consists of 2n acceptance
pairs, defined as: (1) Li are the set of states visited finitely often. (2) Ui are the
set of are visited infinitely often.

(xiii) The function that maps each clock to a process in B is πB =πA .

Theorem 34. DECA is closed under union operation.

Proof. Let A = (SA ,SA
0 ,ΣA ,XA ,γA , i nvA ,→A

deca ,MA ,FA ,πA ) and B = (SB ,SB
0 ,ΣB ,

XB ,γB , i nvB ,→B
deca ,MB ,FB ,πB) be two DECA. Without loss of generality, we as-

sume that the sets of clocks XA and XB (and respectively the sets of locations SA and
SB) are all pairwise disjoint. Let C = (SC ,SC

0 ,ΣC ,XC ,γC ,δC ,→C
deca ,MC ,FC ,πC ) be

the DECA defined as follows:

(i) The locations of C are tuples (s,µ) such that either:
(a) s ∈ SA , µ ∈ (ΣC ∪ i nvC ) and for all ς ∈ (ΣA ∪ i nvA ) : ς ⊆ µ iff ς ∈ δA (s),

which will ensure the coherence of the labelling of (s,µ) with the labelling
of s in A , SC = SA ∪SB ,

(b) or s ∈ SB , µ ∈ (ΣC ∪ i nvC ) and for all ς ∈ (ΣB ∪ i nvB): ς ⊆ µ iff ς ∈
i nvA (s), which will ensure the coherence of the labelling of (s,µ) with
the labelling s in B,

(ii) The starting location of C is the following SC
0 = {(s,µ) ∈ SC | s = SA

0 or s = SB
0 )},

(iii) The alphabet in ΣC is as in A , that is ΣC = ΣA = ΣB , ΣC =ΣA ∪ΣB ,
(iv) The clocks of C are the disjoint union of A and B, that is XC = XA ∪XB ,
(v) The subset of monitored locations of C is the following set: MC = {(s,µ) ∈

SC | s ∈ MA or s ∈ MB},
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(vi) The label of the location (s,µ) is simply the set of symbols ξ : γC ((s,µ)) = ξ,
where ξ ∈ ΣC , for every (s,µ) ∈ SC ,

(vii) The clock constraints of the locations in C is the union of the clock constraints
of the location sa in A and the location sb in B, that is i nvC ((sa , sb)) =
i nvA (sa)∪ i nvB(sb),

(viii) The transition relation of C is the following subset of SC × SC : →C
deca =

{[(s1,µ1), (s2,µ2)] | (s1, s2) ∈→A
deca or (s1, s2) ∈→B

deca}, →C
deca=→A

deca ∪→B
deca ,

(ix) The accepting conditions for C is the union of the accepting condition for A

and B, that is FC = {(s,µ) | s ∈ FA or s ∈ FB}. FC = FA ∪FB ,
(x) The function that maps each clock to a process in C is the union of A and B,

that is πC =πA ∪πB .

Theorem 35. DECA is closed under intersection operation.

Proof. Let A = (SA ,SA
0 ,ΣA ,XA ,γA , i nvA ,→A

deca ,MA ,FA ,πA ) and B = (SB ,SB
0 ,ΣB ,

XB ,γB , i nvB ,→B
deca ,MB ,FB ,πB) be two DECA. Without loss of generality, we as-

sume that the sets of clocks XA and XB (and respectively the sets of locations SA and
SB) are all pairwise disjoint. Let C = (SC ,SC

0 ,ΣC ,XC ,γC , i nvC ,→C
deca ,MC ,FC ,πC )

be the DECA defined as follows:

(i) The set of locations of C are the tuples (sa , sb) such that sa ∈ SA , sb ∈ SB

and for all ς ∈ (ΣA ∪δA ) ∩ (ΣB ∪ i nvB), ς ∈ i nvA (sa) iff ς ∈ i nvB(sb), SC =
SA ×SB ,

(ii) The starting location of C is the following SC
0 = {(sa , sb) ∈ SC | sa = SA

0 and sb =
SB

0 },
(iii) The alphabet in ΣC is as in A , that is ΣC = ΣA = ΣB , ΣC =ΣA ∩ΣB ,
(iv) The clocks of C are the union of A and B, that is XC = XA ∪XB ,
(v) The subset of monitored locations of C is the following set: MC = {(sa , sb) ∈

SC | sa ∈ MA and sb ∈ MB},
(vi) The label locations (sa , sb) of C is the intersection of the label of sa in A and

the label of sb in B, that is γC ((sa , sb)) = γA (sa) ∧ γB(sb), for every (sa , sb) ∈
SC , γC = γA ∪γB ,

(vii) The transition relation of C is the following set SC × SC : →C
deca = {[(sa

1 , sb
1 ), (sa

2 ,

sb
2 )] | (sa

1 , sa
2 ) ∈→A

deca ∨(sa
1 = sa

2 ) and (sb
1 , sb

2 )∈→B
deca ∨(sb

1 = sb
2 )}, ((sA

1 , sA
2 ), (sB

1 ,
sB

2 )) ∈→C
deca iff there exist transitions (sA

1 , sA
2 ) ∈→A

deca and (sA
1 , sA

2 ) ∈→B
deca ,

(viii) The clock constraints of the locations of C is the intersection of the clock con-
straints of the location sa in A and the location sb in B, that is i nvC ((sa , sb)) =
i nvA (sa)∧ i nvB(sb), i nvC = i nvA ∧ i nvB ,

(ix) ((sA
01

, sA
02

), (sB
01

, sB
02

)) ∈C iff there exist transitions (sA
01

, sA
02

) ∈→A
0 and (sA

01
, sA

02
)

∈→B
0 ,

(x) The accepting conditions for C is defined using a generalized Büchi condition
: FC = {GA ,GB} with GA = {(sa , sb) | sa ∈ FA } and GB = {(sa , sb) | sb ∈ FB} and
the reduction from a generalized Büchi automata to Büchi automata is : FC =
FA × {1}.
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(xi) The function that maps each clock to a process in C are the union of A and
B, that is πC =πA ∪πB .

Theorem 36. DECA is closed under complementation operation.

Proof. Given a DECA A = (SA ,SA
0 ,ΣA ,XA ,γA , i nvA ,→A ,MA ,FA ,πA ), such that,

DECA are closed under complementation since they can be determinizable. Given
DECA A , we construct a Muller complement automaton of A , such that, L (A ) =
L (A )c . In the 63 and 33, we show that for an automaton A , we can have a deter-
ministic Rabin automaton Det(A ), using Safra’s Construction. Therefore, we can
construct the Muller complement automaton of A as following : (i) We construct
a determinist Rabin automaton Det(A ) as in 63 and 33. (ii) A deterministic Rabin
automaton Det(A ) has a unique run corresponding to a given TIS ρ. (iii) If we have
a deterministic Rabin automaton Det(A ), we can easily translate into an equivalent
deterministic Muller automaton Det(A ). (iv) Hence, we have an equivalent deter-
ministic Muller automaton Det(A ) for which, we can complement replacing F by
S\F as the final locations for the acceptance of A would result in the automaton
accepting the complement of L (A )c .

proposition 1. For every DECA A and Det(A ) with Rabin accepting condition,
accepts the same language: L +(A ,τ) = L +(Det(A ),τ) for all A and deterministic
Det(A ).

Proof. The proof consists of two steps, first showing L +(A ,τ) ⊆L +(Det(A ),τ) and
then showing L +(Det(A ),τ) ⊆ L +(A ,τ).

(i) L +(A ,τ) ⊆ L +(Det(A ),τ): Let ρ be an TIS. We show that there exists an
accepting run θ for ρ at time t over A for a rate τ iff there exists an accepting
run θ′ for the same τ and ρ over deterministic Rabin automaton Det(A ). We
are using induction over the length of the runs. For θ′ to be accepting, one
of the acceptance pairs (L j ,U j ) has to be satisfied, i.e. from some point on
the states from L j are visited infinitely often and no states from U j are visited,
for 1 ≤ i ≤ 2n. This means we have to find a state j in the automaton Det(A )
that is visited infinitely often (so the states are included in L j ) and is never
removed (so the states will not be in U j ). Let θ = (s0, I0), (s1, I1), (s2, I2), . . . be
the run for ρ at time t and on the rate τ over A , where s are an alternation of
transitions and locations δ1, s1,δ2, s2, · · · , (where δi = (si−1, si ) ∈→deca), and Ii

is an alternating sequence of interval. By induction hypothesis this is possible
only if there exists a run θ′ = (s

′
0, I0), (s

′
1, I1), (s

′
2, I2), . . . for ρ at time t and on

the rate τ over Det(A ), where we can safely assume due to the construction
that, for i ≥ 1, si ∈ s

′
i . Firstly, we say that A accepts an TIS ρ at t with rate τ, if

there is a run θ for ρ that visits infinitely often a monitored location at t . This
time t will use to reset the clock. Secondly, the clock valuation depends on
the TIS ρ, on the reference time of evaluation t , and on the rate τ. It is easy to
see that for i ≥ 1 the clock valuation assigns a (non-standard) positive real, or
undefined, to each clock variable ν(ρ, t ,τ)A = ν

′
(ρ, t ,τ)Det(A ). Thirdly, since
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si−1 ∈ s
′
i−1 and there exists a transition δi from (si−1, si ) in A , there exists s

′
i

such that si ∈ s
′
i and there exists a transition δ

′
i from (s

′
i−1, s

′
i ) where the clock

constraints are satisfied by the valuation ν
′
(ρ, t ,τ)Det(A ). Hence, we can add

s
′
i−1, δ

′
i , s

′
i to the run over Det(A ). It follows immediately that A accepts the

set of TIS ρ at time t and on the rate τ, then the language L +(A ,τ) is defined
as the set of TIS ρ of accepting runs of A with regard to τ, and the language
L +(Det(A ),τ) is defined as the set of TIS ρ of accepting runs of Det(A ) with
regard to τ.

(ii) L +(Det(A ),τ) ⊆ L +(A ,τ): The other direction of the implication is trivial:
If a run is accepted by a deterministic automaton, then it is accepted by a
nondeterministic one.

proposition 2. For every DECA A , Det(A ) accepts the same existential language
L∃(Det(A ), P ) = L∃(A ,P) for any P ⊆ Proc then for all A and deterministic Det(A ).

Proof. Let ρ be an TIS. We show that there exists an accepting run θ for ρ at time
t over A for a rate τ iff there exists an accepting run θ

′
for the same τ and ρ over

Det(A ). We are using induction over the length of the runs. Let θ = (s0, I0), (s1, I1),
(s2, I2), . . . (sn , In) be the run for ρ at time t and on the rate τ over A , where s are an al-
ternation of transitions and locations δ1, s1,δ2, s2, · · · , (where δi = (si−1, si ) ∈→deca),
and Ii is an alternating sequence of interval. By induction hypothesis this is possible
only if there exists a run θ′ = (s

′
0, I0), (s

′
1, I1), (s

′
2, I2), . . . (s

′
n , In) for ρ at time t and on

the rate τ over Det(A ), where we can safely assume due to the construction that,
for each 1 ≤ i ≤ n, si ∈ s

′
i . Firstly, we say that A accepts an TIS ρ at t with rate τ,

if there is a run θ for ρ that visits a monitored location at t . This time t will use to
reset the clock. Secondly, the clock valuation depends on the TIS ρ, on the reference
time of evaluation t , and on the rate τ. It is easy to see that for each 1 ≤ i ≤ n the
clock valuation assigns a (non-standard) positive real, or undefined, to each clock
variable ν(ρ, t ,τ)A = ν

′
(ρ, t ,τ)Det(A ). Thirdly, since sn−1 ∈ s

′
n−1 and there exists a

transition δi from (sn−1, sn) in A , there exists s
′
n such that sn ∈ s

′
n and there exists a

transition δ
′
n from (s

′
n−1, s

′
n) where the clock constraints are satisfied by the valuation

ν
′
(ρ, t ,τ)Det(A ). Hence, we can add s

′
n−1, δ

′
n , s

′
n to the run over Det(A ). It follows

immediately that if A accepts the set of TIS ρ at time t and on the rate τ, then the
language L +

∃ (A ,τ) is defined as the set of TIS ρ of accepting runs of A with regard
to τ, and the language L +

∃ (Det(A ),τ) is defined as the set of TIS ρ of accepting runs
of Det(A ) with regard to τ. We have that L +

∃ (A ,τ) = L +
∃ (Det(A ),τ). The other

direction of the implication is proved using a similar argument.

proposition 3. For every DECA A , Det(A ) accepts the same universal language
L∀(Det(A ) , P ) = L∀(A ,P) for any P ⊆ Proc then for all A and deterministic Det(A ).

Proof. We can derive this easily using 2.

Theorem 37. The τ-wise emptiness problem for DECA is PSPACE-complete.
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Proof. Using region technique [AD94] and [Ras99] we can show that the emptiness
problem for RECA is decidable. As we have shown in this chapter, a RECA is a
DECA. The emptiness problem of DECA is decidable in n ·2m·log(m·c), where n is the
number of locations, m is the number of clocks, and c is the largest constant that
appears in clock constraints, it follows that emptiness of a DECA A can be checked
in PSPACE.

Theorem 38. The τ-wise language inclusion problem for DECA is PSPACE-complete.

Proof. Consider the DECA A and B with regard to τ ∈ rates, such that each au-
tomaton has at most n locations, let m be the number of clocks. Let c be the
largest constant that appears in the clock constraints. To check whether L (A ,τ)
⊆ L (B,τ), we first determinize B to B1 (Deterministic Rabin Automaton) used
Theorem 5.2.1, after we translate B1 to a Muller Automaton and complement B1

to B2(complement Muller automaton). The automata B2 has 2m·log(m·c) locations
since it is a ω automaton (Rabin automaton) and the integer constants that appear
in the clock constraints of B2 are bounded by c. Let D be the intersection of A

and B2. The DECA D has n ·2m·log(m·c) locations, where the integer constants that
appear in the clock constraints of D are also bounded by c.

Theorem 39. The The τ-wise universality for DECA is PSPACE-Complete.

Proof. We use the model of [AL99] to prove by reducing the acceptance of a word w
by a Linear Bounded Alternating Turing Machine (LBATM) M to a model checking
problem for DECA. One can assume that the alphabet of M is {a,b}, and let n = |w |.

Let M = 〈Q,Σ, q0, q f ,→tm〉, where Σ is the alphabet, Q is the set of states that is
partitioned into Qor and Qand , →⊆ Q×Σ×Σ×{L,R}×Q is the transition relation (we
use (q,σ,σ′,δ, q ′) to indicate that when M is in state q and it reads the input σ in
the current tape cell and the head over it, writes σ′ in the current tape cell, and its
reading head moves one cell to the left, or to the right, according to δ and it moves
to state q ′), q0 is the initial state, and q f is the final state.

A configuration of M is a triple (q, w, i ) ∈ Q×Σ∗×Nwhere q is a control location,
w ∈ Σ∗ is the content of the tape, and i ≤ n is the position of the tape head. A
configuration (q ′, w ′, i ′) is a successor of a configuration (q, w, i ) iff there exists a
transition (q,σ,σ′,δ, q ′) ∈→tm such that:

(i) wi =σ,
(ii) w ′

i =σ′ and w ′
j = w j for all j ̸= i ,

(iii) i ′ = i −1 if δ= L and i ′ = i +1 if δ= R with 1 ≤ i ′ ≤ |w |.
We assume that the condition 1 ≤ i ′ ≤ |w | is realized using input delimiters. An
execution of M on the input w ∈Σ∗ is a sequence s0s1 · · · sn of configurations starting
with s0 = (q0, w,1) and such that si+1 is a successor of si for every 0 ≤ i < n. We say
that M accepts w iff M has an execution on w finishing in sn = (q f , w, i ) for some
w ∈Σ∗ and i ∈N. The acceptance problem for LBATM asks, given a LBATM M and
an input word w ∈σ∗ whether M accepts w .

We want to build an DECA AM ,w , while the construction of [AL99] is done for
TA. We establish PSPACE reduction using the acceptance problem for M which is
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known to be PSPACE-complete [CKS81]. Our reduction is similar to [AL99], where a
configuration (q, w, i ) of a M is encoded by a location (q, i ) (that records the control
state q and the tape position i ) and by the two clocks xp

i , y p
i for each tape cell and

p ∈ Pr oc , where 1 ≤ i ≤ |w |. The cell i of the tape contains an a when the constraints
xp

i = y p
i holds, and cell i contains a b when the constraint xp

i < y p
i holds. This

two conditions are invariant by time elapsing. To force time elapsing between two
transitions corresponding to moves of M , this can be done by adding a clock z

p

for each process p ∈ Pr oc, which is checked to 1 and reset to 0 on all transitions. If
(q,σ,σ′,δ, q ′) is a transition of the M , then for each position i of the tape, it will be

represented in A by the transitions (q, i )
φi ,Y →0−−−−−→ (q ′, i ′), where:

(i) φi is xp
i = y p

i ∧ zp = 1 if σ= a and φi is xp
i < y p

i ∧ zp = 1 if σ= b,
(ii) Y = {xp

i , y p
i } if σ= a and Y = {xp

i } if σ= b,
(iii) i ′ = i +1 if δ= R and i < n, and i ′ = i −1 if δ= L and i > 1.

Initially the tape contains the encoding of the word w . This can be done by a
transition from a initial state (q0,1) where q0 is the initial state of the M , which
checks whether zp = 1, and resets clocks in Y0 where Y0 = {zp }∪ {xp

i |wi = b and p ∈
Pr oc}. We distinguish three labels for actions of M : Ini t corresponds to the writing
of w on the tape at the beginning of the computation, a labels any step of M

and Accepti ng labels accepting states of M . The computation over w of the M

terminates iff there is a run from initial state to some state (q f , i ) where q f is the
final state of the M .

From Theorems 37, 38 and 39, we have the next Theorem 40.

Theorem 40. The existential emptiness and language inclusion problems for DECA
are PSPACE-complete.

Proof. We can derive this easily using the Theorem 37 and 38.

Theorem 41. The universal emptiness and language inclusion problems for DECA
are PSPACE-complete.

Proof. We can derive this easily using the Theorem 38 and 39.

proposition 4. For all DECA B,Q ⊆ Pr oc,L∃(B,Q) is the language of a DECA.

Proof. For the existential languages of DECA, we can eliminate a process q from
a DECA while preserving the existential language of the remaining processes. We
first complete and determinize automata appearing in the clocks of this process
q . We then make their product with the main automaton. We then perform the
region construction [AFH96] on the clocks of q . Remember that the clocks are
constrained to be 0 in the respective monitored location, i.e. when at least one
original monitored location appears in this construction, and that prediction clocks
run backwards so that it is the complement of their fractional part that participates
in the region construction [AFH96]. The region construction for prediction clocks
is non-deterministic and is not a bisimulation quotient, unlike the one of TA, but
preserves the language [Ras99]. Note that the elimination of the clocks of one process
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only, allows independent evolution of the other clocks. The resulting automaton is
still a DECA.

proposition 5. For all DECA B, q ∈ Pr oc,L∀(B, {q}) is the language of a RECA.

Proof. For the universal languages L∀(B,Q) of a DECA B, we complete and deter-
minize the main automaton B. Then we apply the region construction for indepen-
dent clocks [ABG+08]. The automaton becomes non-deterministic, because each
region has several successors, depending on τ. Note that the region construction
for ECA was already non-deterministic. A region constraint is expressed as a con-
junction

∧
p∈Procφp . We label each region state by

∧
p∈Qφp . Then we determinize

it again but we mark as final the locations where all members are final (which, in
turn, means that one of their members is an original final state), to represent that
the ISS must be accepted under all evolutions of time τ. The resulting automaton is
a RECA.

proposition 6. For all DECA B, q ∈ Pr oc,L∀(B, {q}) is the language of a DECA.

Proof. For the universal languages of DECA, we can eliminate a process q from
a DECA while preserving the universal language of the remaining processes. We
first complete and determinize automata appearing in the clocks of this process
q . We then make their product with the main automaton. We then perform the
region construction [AFH96] on the clocks of q . Remember that the clocks are
constrained to be 0 in the respective monitored location, i.e. when at least one
original monitored location appears in this construction, and that prediction clocks
run backwards so that it is the complement of their fractional part that participates
in the region construction [AFH96]. The region construction for prediction clocks
is non-deterministic and is not a bisimulation quotient, unlike the one of TA, but
preserves the language [Ras99]. Note that the elimination of the clocks of one process
only, allows independent evolution of the other clocks. The resulting automaton is
still a DECA.

proposition 7. For all DECA B,Q ⊆ Pr oc,L∃(B,Q) is the language of a RECA.

Proof. For the existential languages L∃(B,Q) of a DECA B, we complete and deter-
minize the main automaton B. Then we apply the region construction for indepen-
dent clocks [ABG+08]. The automaton becomes non-deterministic, because each
region has several successors, depending on τ. Note that the region construction
for ECA was already non-deterministic. A region constraint is expressed as a con-
junction

∧
p∈Procφp . We label each region state by

∧
p∈Qφp . Then we determinize

it again but we mark as final the locations where all members are final (which, in
turn, means that one of their members is an original final state), to represent that
the ISS must be accepted under all evolutions of time τ. The resulting automaton is
a RECA.
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6.1.6 Region Construction DECA

The principles of the called region automaton which transforms a timed automaton
A (RG(A )) into an untimed finite automaton can be applied to DECA [AFH94]
[Ras99]. The following theorem is the basis for an algorithmic analysis of DECA
automata:

Theorem 42. The number of locations in the region automaton RG(A ) of a DECA
automata A is n ·2O(m·log(m·c), where n is the number of locations in A , m is the
number of clocks and c is the largest constant appearing in A .

Proof. Let M be a RECA, where n is the number of locations, m is the number of
clocks, and c is the largest integer constant that appears in the clock constraints.
From [Ras99], it follows that the number of locations in the region automaton is
n ·2n ·2O(m·log(m·c)). The inclusion problem for RECA is in fact PSPACE-complete.
In case of DECA the number of clocks are as in RECA n ·2n ·2O(m·log(m·c).

Theorem 43. For every run on the given DECA A , there is an untimed run on the
region automaton of R(A ). The region automaton precisely accepts the language
Untimed(L (A ,τ)).

Proof. The language emptiness is decidable for RG(A ), since it is a finite state
automaton. One can easily see that RG(A ) can be effectively constructed and that
L (A ,τ) is empty iff Untimed(L (A ,τ)) is empty.

In the following section we present a new concept of timed languages for DTA
and icTA.

6.2 Multi-Timed Languages for DTA and icTA

Surprisingly, Akshay et al. [ABG+08] only consider untimed languages for their timed
automata (DTA and icTA). We are interested in timed languages, but we have several
times here. We thus define a multi-TIS as a sequence of letters and (local time) inter-
val sequences, one for each local time in P ⊆ Proc: µ= (σ, (Iq )q∈P ). Let τP be a rate
defined on P . Given an interval I , we can obtain the corresponding multi-interval
τP (I ) by applying τP to its bounds, for instance τP (]ti , ti+1[) =]τP (ti ),τP (ti+1)[. This
extends naturally to interval sequences. Given an TIS ρ = (σ, I ) (expressed in the
reference time), its multi-TIS τP (ρ) is (σ,τP (I )). Let B be an icTA, the language
L (B,τ), is defined as the set of TIS of accepting runs of B for τ, closed under the
equivalence generated by merging adjacent intervals with the same propositional
labeling. However, TIS is not significant here, since it is expressed in the (arbi-
trary) reference time. The multi-timed language L (B,τ,P ) is the set of all accepted
multi-TIS: L (B,τ,P ) = τP (L (B,τ)). If we select a subset Q of P , we can project
a multi-TIS ρ = (σ, (Iq )q∈P ) to this subset Q, noted ρ|Q = (σ, (Iq )q∈Q ). This projec-
tion extends naturally to languages. In particular, the UNTIME operation [AD94] is
the case with P =;. Note that L (B,τ,P )|Q =L (B,τ,Q). When there is only one
process Proc = {q}, the timed language observed by q , L ((A ,π),τ, {q}), does not
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depend on τ, and for an icTA, it is the usual timed language L (A ) of its TA. When τ
is the identity, we also obtain the usual timed language.

For expressing real-time requirements, we have to choose the process(es) that
will measure the time. When we want to avoid some forbidden timed behaviors,
we naturally consult the existential timed semantics. We consider local times as
non-deterministic. If we want a given timed behavior to be possible whatever the
evolution of local times, we check that it belongs to the universal semantics. Thus
we define, for an automaton B and a subset of its processes P :sThe existential timed language observed by P : L∃(B,P ) =⋃

τ∈Rates L (B,τ,P )sThe universal timed language observed by P : L∀(B,P ) =⋂
τ∈Rates L (B,τ,P )

The untimed languages defined in [ABG+08] are special cases with an empty set of
observers. More generally:

Theorem 44. L∃(B,P )|Q =L∃(B,Q) where Q ⊆ P.

Proof.

L∃(B,P )|Q = (
⋃

τ∈Rates
L (B,τ,P ))|Q

= (
⋃

τ∈Rates
τP (L (B,τ)))|Q

= (
⋃

τ∈Rates
{τP (σ, I ) | (σ, I ) ∈L (B,τ))})|Q

= ({(σ,τP (I )) | (σ, I ) ∈L (B,τ))∧τ ∈ Rates})|Q
= {(σ,τQ (I )) | (σ, I ) ∈L (B,τ))∧τ ∈ Rates}

= L∃(B,Q)

But for universal languages, we need to prove the following theorems:

Theorem 45. For any icTA B, if |P | ≥ 2 then L∀(B,P ) =; where P ⊆ Proc.

Proof. We prove this by contradiction. Consider the set of processes P = {p1, p2,
. . . , pn} with n ≥ 2, the universal timed language L∀(B,P ) where P ⊆ Proc and an
TIS ρ, then we want to prove that for all τ ∈ Rates, τP (ρ) ∉ L (B,τ,P ). Assume the
contrary that for some P = {p1, p2, . . . , pn} with n ≥ 2, the universal timed language
L∀(B,P ) =

⋂
τ∈Rates L (B,τ,P ) =

⋂
τ∈RatesτP (L (B,τ)) ̸= ;, then there is ρ, for all τ

∈ Rates, τP (ρ) ∈ L (B,τ,P ). Consider the TIS ρ = (γ(ζ0), {0}), (γ(s1), ]0, t1[), . . ., the
tuple of local functions τ = (τp1 , τp2 , . . . ,τpn ) and since ¬∀τ, τP (ρ) ∈ L (B,τ,P ),

then we have that ¬∀τ, ∃θ that is (s0,ν0, t0)
ζ0−→ (s1,ν1, t1) . . . a run of B, where τP (ρ)

= τP (TIS(θ)). Given B, τ ∈ Rates and ρ = (γ(ζ0), {0}), (γ(s1), ]0, t1[), . . . , we have that
τp1 (t1) = tp1 with κ1 ≤ tp1 ≤ κ2, τp2 (t1) = tp2 with κ1 ≤ tp2 ≤ κ2, . . ., τpn (t1) = tpn with
κ1 ≤ tpn ≤ κ2, where we assume due to the construction that κ1, κ2 are both integers
and for each 1 ≤ i ≤ n, tpi ∈ [κ1,κ2]. Let τp1 (t ) = tp1 · t , τp2 (t ) = 2 · tp2 · t , . . ., τpn (t ) =
n·tpn ·t implies tp1 ·t1 = tp1 then t1 = 1, 2 · tp2 ·t1 = tp2 then t1 = 1/2, . . ., n · tpn ·t1 = tpn

then t1 = 1/n which is impossible and contradicts that L∀(B,P ) ̸= ;.
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Theorem 46. For some icTA B with final states F ̸= ;, if |P | < 2 then L∀(B,P ) ̸= ;
where P ⊆ Proc.

Proof. We prove this by contradiction. Consider the set of a single process P = {p}
and the universal timed language L∀(B,P ) where P ⊆ Proc and an TIS ρ, then
we want to prove that for all τ ∈ Rates, τP (ρ) ∈ L (B,τ,P ). Assume the contrary
that for some P = {p}, the universal timed language L∀(B,P ) =

⋂
τ∈Rates L (B,τ,P )

=
⋂
τ∈RatesτP (L (B,τ)) = ;, then there is ρ, for at least one τ ∈ Rates, τP (ρ) ∉

L (B,τ,P ). Consider the TIS ρ = (γ(ζ0), {0}), (γ(s1), ]0, t1[), . . ., the tuple of local func-
tions τ = (τp ) and since ¬∀τ, τP (ρ) ∈ L (B,τ,P ), then we have that ¬∀τ, ∃θ that is

(s0,ν0, t0)
ζ0−→ (s1,ν1, t1) . . . a run of B, where τP (ρ) = τP (TIS(θ)). Given B, τ ∈ Rates

and ρ = (γ(ζ0), {0}), (γ(s1), ]0, t1[), . . . , we have that τp1 (t1) = tp with κ1 ≤ tp1 ≤ κ2,
where we assume due to the construction that κ1, κ2 are both integers and tp ∈
[κ1,κ2]. Let τp (t) = tp · t , implies tp · t1 = tp then t1 = 1, which contradicts that
L∀(B,P ) =;.

Theorem 47. L∀(B,P )|Q ⊆L∀(B,Q) where Q ⊆ P.

Proof. Consider the set of processes P = {p1, p2, . . . , pn} with n ≥ 2, the universal
timed language L∀(B,P )|Q where Q ⊆ P ⊆ Proc and 2 ≤ |Q| ≤ n, then we want to
prove that L∀(B,P )|Q ⊆L∀(B,Q).

L∀(B,P )|Q = (
⋂

τ∈Rates
L (B,τ,P ))|Q

= ;⊆L∀(B,Q)

Theorem 48. For any icTA B, L∃(B,Q) is the language of an icTA on Q.

Proof. Existential timed languages can be computed by a variant of the region
construction, of which the construction of [ABG+08] is a special case. Let q ∈ Proc
be a process whose clocks we want to eliminate, i.e. we have an icTA B on Proc
and we would like to construct an icTA on Proc \ {q} whose existential language is
L∃(B,Proc \ {q}). We construct the region equivalence, but on the clocks of q only.
This gives a region icTA without the clocks of q , and where the locations are now
a pair of an original location and a region constraint on clocks of q , which has the
required language. If we want to eliminate several processes, we eliminate them
one by one: eliminating several processes together would give a result that does not
reflect the independence of their clocks.

Theorem 49. For any icTA B, L∃(B, {q}) is the language of a TA.

Proof. Existential timed language can be computed by the region construction
[ABG+08] of an icTA for the independent clocks of the single process q ∈ Proc,
whose clocks evolve at the same speed, i.e., they follow the same clock rate, then
our model corresponds to a standard timed automata [AD94]. We construct the

105



region equivalence with the clocks of q . A region constraint is of the form
∧

q∈Procφq .
This gives a region icTA with the clocks of q , and where the locations are now a
pair of an original location and a region constraint on clocks of q , which has the
required language. We label the region state by

∧
q∈Procφq . Then we mark as final

the locations where all members are final (which, in turn, means that one of their
members is an original final state), to represent that the ISS must be accepted under
evolution of time τq . The resulting automaton is a TA.

This variety of languages leads to three generalisations of the classical problems
of emptiness, inclusion, intersection and union. First, the τ-wise definitions:

Definition 65. Given icTA A ,B,C ,
(i) C is a τ-intersection of A ,B iff ∀τ ∈ Rates,L (C ,τ) =L (A ,τ)∩L (B,τ)

(ii) C is a τ-union of A ,B iff ∀τ ∈ Rates,L (C ,τ) =L (A ,τ)∪L (B,τ)
(iii) C is a τ-complement automaton of A iff ∀τ ∈ Rates,L (C ,τ) = L (A ,τ)c ,

where c is the complement operator.
(iv) A is a τ-language-included in B iff ∀τ ∈ Rates,L (A ,τ) ⊆L (B,τ)
(v) The τ-emptiness problem for A is ∀τ ∈ Rates,L (A ,τ) =;

The existential use respectively the existential timed language observed by P ⊆
Proc.

Definition 66. Given icTA A ,B,C ,
(i) C is an ∃-intersection observed by P of A ,B iff L∃(C ,P ) =L∃(A ,P )∩L∃(B,P )

(ii) C is an ∃-union observed by P of A ,B iff L∃(C ,P ) =L∃(A ,P )∪L∃(B,P )
(iii) C is an ∃-complement automaton observed by P of A iff L∃(C ,P ) =L∃(A ,P )c ,

where c is the complement operator.
(iv) A is ∃-language-included observed by P in B iff L∃(A ,P ) ⊆L∃(B,P )
(v) The ∃-emptiness problem observed by P for A is L∃(A ,P ) =;

The universal use respectively the universal timed language observed by P ⊆
Proc.

Definition 67. Given icTA A ,B,C ,
(i) C is a∀-intersection observed by P of A ,B iff L∀(C ,P ) =L∀(A ,P )∩L∀(B,P )

(ii) C is a ∀-union observed by P of A ,B iff L∀(C ,P ) =L∀(A ,P )∪L∀(B,P )
(iii) C is a ∀-complement automaton observed by P of A iff L∀(C ,P ) =L∀(A ,P )c ,

where c is the complement operator.
(iv) A is ∀-language-included observed by P in B iff L∀(A ,P ) ⊆L∀(B,P )
(v) The ∀-emptiness problem observed by P for A is L∀(A ,P ) =;

The τ-wise definitions are indeed the strongest:

Theorem 50. icTA is closed under union operation.

Proof. Let A = (SA ,sA
0 ,ΣA ,XA ,γA , InvA ,→A

i ct a ,FA ,πA ) and B = (SB ,sB
0 ,ΣB ,XB ,

γB , InvB ,→B
i ct a ,FB ,πB) be two icTA. Without loss of generality we assume that the

sets of clocks XA and XB (and respectively the sets of locations SA and SB) are
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all pairwise disjoint. Let C = (ΣC ,XC ,SC ,sC
0 ,→C

i ct a ,γC , InvC ,FC ,πC ) be the icTA
defined as follows:

(i) SC = SA ∪SB ,
(ii) sC

0 = (sA
0 ,sB

0 ),
(iii) ΣC =ΣA ∪ΣB ,
(iv) XC = XA ∪XB ,
(v) γC = γA ∪γB ,

(vi) InvC = InvA ∪ InvB ,
(vii) →C

i ct a=→A
i ct a ∪→B

i ct a ,
(viii) FC = FA ∪FB ,

(ix) πC =πA ∪πB ,

The proof of union correctness is the following: We need to show that for all τ ∈ Rates,
ρ ∈ L (C ,τ) iff ρ ∈ L (A ,τ)∪L (B,τ). Assume that ρ = (γ(ζ0), {t0}), (γ(s1), ]t1, t2[),
. . . , (γ(sn), ]tn−1, tn[) ∈ L (C ,τ) is an TIS and an icTA C . Then ρ originates from

some runs θ = (sC
0 ,ν0, t0)

ζ0−→ (sC
1 ,ν1, t1) . . .

ζn−1−−−→ (sC
n ,νn , tn) of C with regard to τ,

where a run is an alternating sequence of states and transitions. The states are
triples of a location, a clock valuation, and lastly the reference time: {(s,ν, t ) ∈ SC ×
RX
≥0 ×R≥0 | ν |= Inv(s)}. The transitions must alternate between two types: (i) Delay

transition, i.e. spending time in a location: qi
d−→ qi +d , where qi = (si ,νi , ti ), and

qi +d = (si ,νi + (τ(ti +d)−τ(ti )), ti +d), if the invariant is continuously true in local
time: ∀t ∈]ti , ti +d [: νi + (τ(t)−τ(ti )) |= Inv(si ). (ii) Discrete transition: following a
transition ζi = (si−1,φ,Y , si ) ∈→icTA when the clock constraint φ is satisfied. The

clocks in Y are then reset. This transition is instantaneous. (si−1,νi−1, ti−1)
ζi−→

(si ,νi , ti ), such that νi−1 |= φ, νi = νi−1[Y → 0], ti−1 = ti . For any clock xC ∈ XC ,
ν(xC ) = τ(t)−τ(ti ) where i ≥ 0 is the index of the last transition which reset clock
xC or is τ(t ) if xC was never reset. We can say the C accepts ρ at time t with regard
to τ, if there is a run θ for an equivalent of ρ that visits an accepting location sC

n ∈ FC

at t and on the rate τ, where we can safely assume due to the construction that, for

each 1 ≤ i ≤ n, sC
0

ρ−−→C sC
n . By induction hypothesis we know that ρ = (γ(ζ0), {t0}),

(γ(s1), ]t1, t2[), . . . , (γ(sn), ]tn−1, tn[) ∈ (L (A ,τ) ∪L (B,τ)), then there is an accepting

run θ
′

= (sA∪B
0 ,ν

′
0, t0)

ζ0−→ (sA∪B
1 ,ν

′
1, t1) . . .

ζn−1−−−→ (sA∪B
n ,ν

′
n , tn) be the run for ρ that

visits an accepting location sA∪B
n ∈ (FA ∪FB) at t and on the rate τ, where we can

safely assume due to the construction that, for each 1 ≤ i ≤ n, sA∪B
0

ρ−→A∪B sA∪B
n .

Firstly, we say that C accepts an TIS ρ at t with regard to rate τ, if there is a run
θ for ρ that visits a accepting location sC

n ∈ FC at t . Secondly the clock valuation
depends on the TIS ρ, on the reference time of evaluation t , and on the rate τ. It
is easy to see that for each 1 ≤ i ≤ n the clock valuation assigns a (non-standard)
positive real to each clock variable νi = ν

′
i . Thirdly, since sC

n−1 ∈ (SA ∪ SB) and there
exists a transition ζC

n−1 = (sC
n−2,φ,Y , sC

n−1) ∈ →C
i cT A , there exists sA∪B

n ∈ (FA ∪ FB)
such that sC

n ∈ (FA ∪ FB) and there exists a transition ζA∪B
n = ((sA

n−1,φ,Y , sA
n ) ∈

→A
i cT A ∪ (sB

n−1,φ,Y , sB
n ) ∈ →B

i cT A) where the clock constraints are satisfied by the

valuation ν
′
n . Hence we can adjunct sA∪B

0
ρ−→ sA∪B

n to the run over A and B. It
follows immediately that C accepts the set of TIS ρ at time t and on the rate τ, then
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the language L (C ,τ) is the set of TIS ρ of accepting runs of C with regard to τ, and
the language L (A ,τ) ∪L (B,τ) is defined as the set of ISS ρ of accepting runs of the
union of A and B with regard to τ. We have that L (C ,τ) =L (A ,τ)∪L (B,τ).

Theorem 51. icTA is closed under intersection operation.

Proof. Let A = (SA ,sA
0 ,ΣA ,XA ,γA , InvA ,→A

i ct a ,FA ,πA ) and B = (SB ,sB
0 ,ΣB ,XB ,

→B
i ct a ,γB , InvB ,FB ,πB) be two icTA. Without loss of generality we assume that the

sets of clocks XA and XB (and respectively the sets of locations SA and SB) are
all pairwise disjoint. Let C = (ΣC ,XC ,SC ,sC

0 ,→C
i ct a ,γC , InvC ,FC ,πC ) be the icTA

defined as follows:

(i) SC = SA ×SB ,
(ii) sC

0 = (sA
0 ,sB

0 ),
(iii) ΣC =ΣA ∩ΣB ,
(iv) XC = XA ∪XB ,
(v) For all sA

1 ∈ SA , sB
2 ∈ SB and s ∈ SC , γC (s) = γA (s1)∧γB(s2),

(vi) InvC = InvA ∧ InvB ,
(vii) For all sA

1 , sA
2 ∈ SA , sB

1 , sB
2 ∈ SB , φC = φA ∧ φB , and Y C = Y A ∪ Y B :

((sA
1 , sA

2 ),φC ,Y C , (sB
1 , sB

2 )) ∈→C
i ct a iff there exist transitions (sA

1 ,φA ,Y A , sA
2 )

∈→A
i ct a and (sB

1 ,φB ,Y B , sB
2 ) ∈→B

i ct a ,
(viii) FC = FA ×FB ,

(ix) πC =πA ∪πB ,

The proof of intersection correctness is the following: We need to show that for
any τ ∈ Rates, ρ ∈ L (C ,τ) iff ρ ∈ L (A ,τ)∩L (B,τ). Assume that ρ = (γ(ζ0), {t0}),
(γ(s1), ]t1, t2[), . . . , (γ(sn), ]tn−1, tn[) ∈ L (C ,τ) is an TIS and an icTA C . Then ρ

originates from some runs θ = (sC
0 ,ν0, t0)

ζ0−→ (sC
1 ,ν1, t1) . . .

ζn−1−−−→ (sC
n ,νn , tn) of C

with regard to τ, where a run is an alternating sequence of states and transitions.
The states are triples of a location, a clock valuation, and lastly the reference time:
{(s,ν, t) ∈ SC ×RX

≥0 ×R≥0 | ν |= Inv(s)}. The transitions must alternate between two

types: (i) Delay transition, i.e. spending time in a location: qi
d−→ qi +d , where

qi = (si ,νi , ti ), and qi +d = (si ,νi + (τ(ti +d)−τ(ti )), ti +d), if the invariant is con-
tinuously true in local time: ∀t ∈]ti , ti +d [: νi + (τ(t)−τ(ti )) |= Inv(si ). (ii) Discrete
transition: following a transition ζi = (si−1,φ,Y , si ) ∈→icTA when the clock con-
straint φ is satisfied. The clocks in Y are then reset. This transition is instantaneous.

(si−1,νi−1, ti−1)
ζi−→ (si ,νi , ti ), such that νi−1 |=φ, νi = νi−1[Y → 0], ti−1 = ti . For any

clock xC ∈ XC , ν(xC ) = τ(t )−τ(ti ) where i ≥ 0 is the index of the last transition which
reset clock xC or is τ(t) if xC was never reset. We can say the C accepts ρ at time
t with regard to τ, if there is a run θ for an equivalent of ρ that visits an accepting
location sC

n ∈ FC at t and on the rate τ, where we can safely assume due to the

construction that, for each 1 ≤ i ≤ n, sC
0

ρ−−→C sC
n . By induction hypothesis we know

that ρ = (γ(ζ0), {t0}), (γ(s1), ]t1, t2[), . . . , (γ(sn), ]tn−1, tn[) ∈ (L (A ,τ) ∩ L (B,τ)), then

there is an accepting run θ
′

= (sA∩B
0 ,ν

′
0, t0)

ζ0−→ (sA∩B
1 ,ν

′
1, t1) . . .

ζn−1−−−→ (sA∩B
n ,ν

′
n , tn)

be the run for ρ that visits an accepting location sA∩B
n ∈ (FA ×FB) at time t and

on the rate τ, where we can safely assume due to the construction that, for each
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1 ≤ i ≤ n, sA∩B
0

ρ−→A∩B sA∩B
n . Firstly, we say that C accepts an TIS ρ at t with regard

to rate τ, if there is a run θ for ρ that visits a accepting location sn ∈ FC at t . Secondly
the clock valuation depends on the TIS ρ, on the reference time of evaluation t ,
and on the rate τ. It is easy to see that for each 1 ≤ i ≤ n the clock valuation assigns
a (non-standard) positive real to each clock variable νi = ν

′
i . Thirdly, since sC

n−1 ∈
(SA × SB) and there exists a transition ζC

n−1 = (sn−2,φ,Y , sn−1) ∈→C
i cT A , there exists

sA∩B
n ∈ (FA × FB) such that sC

n ∈ (FA × FB) and there exists a transition ζA∩B
n =

((sA
n−1, sA

n ),φC ,Y C , (sB
n−1, sB

n )) ∈→C
i ct a iff there exist transitions (sA

n−1,φA ,Y A , sA
n ) ∈

→A
i ct a and (sB

n−1,φB ,Y B , sB
n ) ∈→B

i ct a , for all sA
n−1, sA

n ∈ SA , sB
n−1, sB

n ∈ SB , φC = φA

∧φB , and Y C = Y A ∪ Y B , where the clock constraints are satisfied by the valuation

ν
′
n . Hence we can adjunct sA∩B

0
ρ−→ sA∩B

n to the run over A and B. It follows imme-
diately that C accepts the set of TIS ρ at time t and on the rate τ, then the language
L (C ,τ) is the set of TIS ρ of accepting runs of C with regard to τ, and the language
L (A ,τ) ∩L (B,τ) is defined as the set of TIS ρ of accepting runs of the intersection
of A and B with regard to τ. We have that L (C ,τ) =L (A ,τ)∩L (B,τ).

Theorem 52. If C is a τ-union of A ,B, then for any P ⊆Proc, L∃(C ,P ) =L∃(A ,P )∪
L∃(B,P ).

Proof.

L∃(A ,P )∪L∃(B,P ) = (
⋃

τ∈Rates
L (A ,τ,P ))∪ (

⋃
τ∈Rates

L (B,τ,P ))

= (
⋃

τ∈Rates
τP (L (A ,τ)))∪ (

⋃
τ∈Rates

τP (L (B,τ)))

= (
⋃

τ∈Rates
{τP (ρ) | ρ ∈L (A ,τ)})∪

(
⋃

τ∈Rates
{τP (ρ) | ρ ∈L (B,τ)})

= {(σ,τP (I )) | (ρ ∈L (A ,τ))∨ (ρ ∈L (B,τ))

∧ τ ∈ Rates}

= {(σ,τP (I )) | ρ ∈ (L (A ,τ)∪L (B,τ))

∧ τ ∈ Rates}

= {(σ,τP (I )) | ρ ∈L (C ,τ)∧ τ ∈ Rates}

= L∃(C ,P )

Theorem 53. If C is an τ-intersection of A ,B, then for any P ⊆ Proc, L∀(C ,P ) =
L∀(A ,P )∩L∀(B,P ).

109



Proof.

L∀(A ,P )∩L∀(B,P ) = (
⋂

τ∈Rates
L (A ,τ,P ))∩ (

⋂
τ∈Rates

L (B,τ,P ))

= (
⋂

τ∈Rates
τP (L (A ,τ)))∩ (

⋂
τ∈Rates

τP (L (B,τ)))

= (
⋂

τ∈Rates
{τP (ρ) | ρ ∈L (A ,τ)})∩

(
⋂

τ∈Rates
{τP (ρ) | ρ ∈L (B,τ)})

= (
⋂

τ∈Rates
{τP (ρ) | (ρ ∈L (A ,τ))∧

(ρ ∈L (B,τ))}∧ τ ∈ Rates})

= (
⋂

τ∈Rates
{τP (ρ) | ρ ∈ (L (A ,τ)∩

L (B,τ))}∧ τ ∈ Rates})

= (
⋂

τ∈Rates
{τP (ρ) | ρ ∈L (C ,τ)∧ τ ∈ Rates})

= L∀(C ,P )

Theorem 54. If C is an τ-intersection of A ,B, then for any P ⊆ Proc, L∃(C ,P ) =
L∃(A ,P )∩L∃(B,P ).

Proof.

L∃(A ,P )∩L∀(B,P ) = (
⋂

τ∈Rates
L (A ,τ,P ))∩ (

⋂
τ∈Rates

L (B,τ,P ))

= (
⋂

τ∈Rates
τP (L (A ,τ)))∩ (

⋂
τ∈Rates

τP (L (B,τ)))

= (
⋂

τ∈Rates
{τP (ρ) | ρ ∈L (A ,τ)})∩

(
⋂

τ∈Rates
{τP (ρ) | ρ ∈L (B,τ)})

= (
⋂

τ∈Rates
{τP (ρ) | (ρ ∈L (A ,τ))∧

(ρ ∈L (B,τ))}∧ τ ∈ Rates})

= (
⋂

τ∈Rates
{τP (ρ) | ρ ∈ (L (A ,τ)∩

L (B,τ))}∧ τ ∈ Rates})

= (
⋂

τ∈Rates
{τP (ρ) | ρ ∈L (C ,τ)∧ τ ∈ Rates})

= L∃(C ,P )
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Theorem 55. If C is an τ-union of A ,B, then for any P ⊆Proc, L∀(C ,P ) =L∀(A ,τ)∪
L∀(B,P ).

Proof.

L∀(A ,P )∪L∃(B,P ) = (
⋃

τ∈Rates
L (A ,τ,P ))∪ (

⋃
τ∈Rates

L (B,τ,P ))

= (
⋃

τ∈Rates
τP (L (A ,τ)))∪ (

⋃
τ∈Rates

τP (L (B,τ)))

= (
⋃

τ∈Rates
{τP (ρ) | ρ ∈L (A ,τ)})∪

(
⋃

τ∈Rates
{τP (ρ) | ρ ∈L (B,τ)})

= {(σ,τP (I )) | (ρ ∈L (A ,τ))∨ (ρ ∈L (B,τ))

∧ τ ∈ Rates}

= {(σ,τP (I )) | ρ ∈ (L (A ,τ)∪L (B,τ))

∧ τ ∈ Rates}

= {(σ,τP (I )) | ρ ∈L (C ,τ)∧ τ ∈ Rates}

= L∀(C ,P )

We note that the above theorems are valid for the finite automata, but they are
not correct for the ω-automata [Pit06]. The closure under the union operation for
the ω-automata icTA can be done similar to 50. The intersection for the ω-automata
icTA can be done using the same construction of intersection for the Büchi automata.
We denote the ω-automata icTA as icTAI .

Theorem 56. icTAI is closed under intersection operation.

Proof. Let A = (SA ,sA
0 ,ΣA ,XA ,γA , InvA ,→A

i ct a ,FA ,πA ) and B = (SB ,sB
0 ,ΣB ,XB ,

γB , InvB ,→B
i ct a ,FB ,πB) be Büchi icTA. Without loss of generality we assume that

the sets of clocks XA and XB (and respectively the sets of locations SA and SB) are
all pairwise disjoint. Let C = (ΣC ,XC ,SC ,sC

0 ,→C
i ct a ,γC , InvC ,FC ,πC ) be the icTA

defined as follows:
(i) SC = SA ×SB × {1,2},

(ii) sC
0 = (sA

0 ,sB
0 ,1),

(iii) ΣC =ΣA ∩ΣB ,
(iv) XC = XA ∪XB ,
(v) For all sA

1 ∈ SA , sB
2 ∈ SB and s ∈ SC , γC (s) = γA (s1)∧γB(s2),

(vi) InvC = InvA ∧ InvB ,
(vii) For all sA

1 , sA
2 ∈ SA , sB

1 , sB
2 ∈ SB , φC = φA ∧ φB , and Y C = Y A ∪ Y B and

i , j ∈ {1,2}: ((sA
1 , sB

1 , i ), φC , Y C , (sA
2 , sB

2 , j )) ∈→C
i ct a iff there exist transitions

(sA
1 ,φA ,Y A , sA

2 ) ∈→A
i ct a and (sB

1 ,φB ,Y B , sB
2 ) ∈→B

i ct a and:
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(a) if i = 1 and sA
1 ∈ FA , then j = 2, or

(b) if i = 2 and sB
1 ∈ FB , then j = 1, or

(c) neither a) or b) above applies and j = i .
(viii) FC = FA ×SB × {1},

(ix) πC =πA ∪πB ,

The proof of intersection correctness to infinite timed sequence is the following:
We need to show that for any τ ∈ Rates, ρ ∈ L (C ,τ) iff ρ ∈ L (A ,τ) ∩L (B,τ).
Assume that ρ = (γ(ζ0), {t0}), (γ(s1), ]t1, t2[), . . . ∈ L (C ,τ) is an TIS and an icTA C .

Then ρ originates from some runs θ = (sC
0 ,ν0, t0)

ζ0−→ (sC
1 ,ν1, t1) . . . of C with regards

to τ, where a run is an alternating sequence of states and transitions. The states
are triples of a location, a clock valuation, and the reference time: {(s,ν, t) ∈ SC ×
RX
≥0 ×R≥0 | ν |= Inv(s)}. The transitions must alternate between two types: (i) Delay

transition, i.e. spending time in a location: qi
d−→ qi +d , where qi = (si ,νi , ti ), and

qi +d = (si ,νi + (τ(ti +d)−τ(ti )), ti +d), if the invariant is continuously true in local
time: ∀t ∈]ti , ti +d [: νi + (τ(t)−τ(ti )) |= Inv(si ). (ii) Discrete transition: following a
transition ζi = (si−1,φ,Y , si ) ∈→icTA when the clock constraint φ is satisfied. The

clocks in Y are then reset. This transition is instantaneous. (si−1,νi−1, ti−1)
ζi−→

(si ,νi , ti ), such that νi−1 |= φ, νi = νi−1[Y → 0], ti−1 = ti . For any clock xC ∈ XC ,
ν(xC ) = τ(t)−τ(ti ) where i ≥ 0 is the index of the last transition which reset clock
xC or is τ(t ) if xC was never reset. To determine whether a run of ρ is accepting, we
consider the set inf(ρ) ⊆ FC which is the set of all locations that occur in ρ infinitely
often. We can say C accepts ρ at time t with regards to τ, if there is a run θ for an
equivalent of ρ that visits infinitely often accepting locations in FC at t and on the
rate τ, where we can safely assume due to the construction that, inf(ρ) ∩ FC ̸= ;. By
induction hypothesis we know that ρ = (γ(ζ0), {t0}), (γ(s1), ]t1, t2[), . . . ∈ (L (A ,τ) ∩
L (B,τ)), then there is an accepting run θ

′
= (sA∩B

0 ,ν
′
0, t0)

ζ0−→ (sA∩B
1 ,ν

′
1, t1) . . . be the

run for ρ at time t and on the rate τ, where we can safely assume due to the accepting
condition of Büchi automaton that, A universally accepts ρ if, inf(ρ) ∩ FA∩B ̸= ;,
where inf(ρ) is set of locations that occur infinitely often in ρ. Firstly, we say that C

accepts an TIS ρ at t with regards to rate τ, if there is a run θ for ρ that visits infinitely
often accepting locations in FA∩B at t . Secondly the clock valuation depends on the
TIS ρ, on the reference time of evaluation t , and on the rate τ. It is easy to see that
for each i ≥ 0 the clock valuation assigns a (non-standard) positive real to each clock
variable νi = ν′i . Thirdly, since sC ∈ (SA × SB×{1, 2}) and there exists a transition ζC

= (s,φ,Y , s
′
) ∈→C

i ct a , there exists a sA∩B that visit infinitely often to (FA × SB × {1})
such that sC ∈ (SA × SB × {1,2}) and there exists a transition ζA∩B = ((sA

1 , sB
1 , i ),

φC , Y C , (sA
2 , sB

2 , j )) ∈→C
i ct a iff there exist transitions (sA

1 ,φA ,Y A , sA
2 ) ∈→A

i ct a and
(sB

1 ,φB ,Y B , sB
2 ) ∈→B

i ct a for all sA
1 , sA

2 ∈ SA , sB
1 , sB

2 ∈ SB , φC = φA ∧ φB , and Y C

= Y A ∪ Y B and i , j ∈ {1,2}, and:

(i) if i = 1 and sA
1 ∈ FA , then j = 2, or

(ii) if i = 2 and sB
1 ∈ FB , then j = 1, or

(iii) Neither a) or b) above applies and j = i .

Hence we can adjunct inf(ρ) ∩ (FA × SB × {1}) to the run over A and B. It follows
immediately that C accepts the set of TIS ρ at time t and on the rate τ, then the
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language L (C ,τ) is the set of TIS ρ of accepting runs of C with regards to τ, and
the language L (A ,τ) ∩ L (B,τ) is defined as the set of TIS ρ of accepting runs of
the intersection of A and B with regards to τ. We have that L (C ,τ) =L (A ,τ)∩
L (B,τ).

However, icTAI are not determinizable, not closed under complement, and
their inclusion problem is undecidable (whether τ-wise, existential with at least one
observer, or universal with at most one observer), because TA [AD94] are a special
case of icTA.

6.3 Recursive Distributed Event Clocks Temporal Logic

This section aims to construct a fully decidable distributed real-time logic to spec-
ify requirements on DRTS. (Recursive) Distributed Event Clock Temporal Logic
(DECTL) extend the (Recursive) Event Clock Temporal Logic (EventClockTL) [RS97,
HRS98] with distributed (a.k.a. independent) clocks. As in Section 6.1, we assume a
set of processes Proc. The clocks of each process will evolve according to its local
time given by a rate τ. DECTL is based on LTL, and adds two local real-time modali-
ties. The recording modality ◁q

I φ means that φ was true last time in the interval I
according to the local time of q . Symmetrically, the predicting modality ▷q

I φ says
theφwill occur within I according to the local time of q . If we have only one process,
we find back EventClockTL [RS97].

We could construct similarly a more expressive logic that allows us to observe not
only the last φ, but also the last but one, and more generally the last but n φ [OLS10].
This logic is still translatable in DECA. We could also extend the known expressive
equivalence of EventClockTL and MITL+Past [HRS98] to construct a version of
MITL with independent clocks. Lastly, independent clocks can also be introduced
in a linear µ-calculus, to increase expressiveness by counting.

Definition 68. The formulas of DECTL are defined by the grammar:

φ ::= tr ue | p ∈P | ▷q
I φ | ◁q

I φ | φ1 ∧ φ2 | ¬φ | φ1 U φ2 | φ1 S φ2

where p is a propositional symbol, I ∈ IN is an interval and q ∈ Proc. We can now
define how to evaluate the truth value of a DECTL formula along an TIS ρ and a rate
τ, noted (ρ, t ) |=τ φ1. We omit τ below.

(ρ, t ) |= p iff p ∈ ρ(t )
(ρ, t ) |= ¬φ iff (ρ, t ) |̸=φ
(ρ, t ) |= φ1 ∧φ2 iff (ρ, t ) |=φ1 and (ρ, t ) |=φ2

(ρ, t ) |= φ1Uφ2 iff ∃t ′ > t .(ρ, t ′) |=φ2 and ∀t ′′ ∈ (t , t ′), (ρ, t ′′) |=φ1

(ρ, t ) |= φ1S φ2 iff ∃t ′ < t .(ρ, t ′) |=φ2 and ∀t ′′ ∈ (t ′, t ), (ρ, t ′′) |=φ1

(ρ, t ) |= ◁q
I φ iff ∃t ′ < t .τq (t )−τq (t ′) ∈ I ∧ (ρ, t ′) |=φ and ∀t ′′ < t .τq (t )−

τq (t ′′) < I , (ρ, t ′′) |̸=φ
(ρ, t ) |= ▷q

I φ iff ∃t ′ > t .τq (t ′)−τq (t ) ∈ I ∧ (ρ, t ′) |=φ and ∀t ′′ > t .τq (t ′′)−
τq (t ) < I , (ρ, t ′′) |̸=φ
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Example 19. The formula ¬(Fb ∧¬▷q
≤1 b), where Fb = true U b says that the first

b, if any, must occur within 1 second, as measured by q. It holds on the automation of
Figure 6.1. However, the formula measured by p, ¬(Fb ∧¬▷p

≤1 b), does not hold.

6.3.1 From DECTL and DECA

In this section, we show that DECA are sufficiently expressive to define all DECTL
properties. We can translate any DECTL formula φ into a DECA automaton Aφ that
accepts the pairs (ρ, t ), such that (ρ, t ) |=τ φ, for all τ by a tableau construction. The
translation is done level by level, where the level of a formula is the nesting depth of
real-time modalities. A formula ▷q

I φ is translated as constraint xq
Aφ

∈ I . The formula

φ is recursively translated in a tableau automaton Aφ where the monitored states
are the states containing φ.

Definition 69. The level of a DECTL formulas φ1, φ2, φ3 denoted by L F , is a
recursive function that satisfy the following:

L F (p) = 0
L F (φ1 ∨φ2) = Max(L F (φ1)∪L F (φ2))
L F (¬φ1) = L F (φ1)
L F (φ1Uφ2) = Max(L F (φ1)∪L F (φ2)))
L F (φ1S φ2) = Max(L F (φ1)∪L F (φ2))
L F (▷q

I φ3) = 1+L F (φ3)
L F (◁q

I φ3) = 1+L F (φ3)

A formulaφ is of level i , if L F (φ) = i . Recursively, we can define that the formula
φ3 is a level k where 0 ≤ k < i and φ1, φ2 is a level j where 0 ≤ j ≤ i .

Definition 70. The closure set of a DECTL formula φ1, φ2, φ3 denoted by C F , is a
recursive function that satisfy the following:

C F (p) = {p}
C F (φ1 ∨φ2) = C F (φ1)∪C F (φ2)∪ {φ1 ∨φ2}
C F (¬φ1) = C F (φ1)
C F (φ1Uφ2) = C F (φ1)∪C F (φ2)∪ {φ1Uφ2}
C F (φ1S φ2) = C F (φ1)∪C F (φ2)∪ {φ1S φ2}
C F (▷q

I φ3) = ⋃
q∈Proc▷

q
I φ3

C F (◁q
I φ3) = ⋃

q∈Proc◁
q
I φ3

C F c (φ1) i s the set C F (φ1) closed by neg ati on.

We give a proof for the construction of a DECA Aφ, for every DECTL formula φ.
This proof is an adaptation of the construction for EventClockTL and RECA.

Theorem 57. For every DECTL formulaφ, we can construct a DECA Aφ, that accepts
the pairs (ρ, t ), where ρ is defined on the set of propositions appearing in φ and a time
t ∈ R≥0, such that (ρ, t ) |=τ φ.
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Proof. Let L F (φ) = 0. We define a transition structure B = (Q,q0,→ts,QF) that
checks the semantics of the operators and propositions of level 0 formula. For the
other levels i , such that i > 0, we will transform the transition structure into a DECA.
Let DECTL formula φ, φ1, φ2, we define B as follows:

(i) The state S is the set of pairs (s,ϕ), where s ∈ 2C F c (φ) with ⊤ ∈ s and ϕ ∈
{open, si ng }(indicating if the control can stay in the state for an open interval
of time or just a singular interval of time) and the following properties are
verified:

(a) For all φ1 ∈ C F c (φ): φ1 ∈ s iff ¬ φ1 ∉ s.
(b) For all (φ1 ∨ φ2) ∈ C F c (φ): φ1 ∨ φ2 ∈ s iff φ1 ∈ s or φ2 ∈ s.
(c) For all (φ1 U φ2) ∈ C F c (φ):

i. If φ2 ∈ s and ϕ = open then φ1 U φ2 ∈ s.
ii. If φ1 U φ2 ∈ s and ϕ = open then φ1 ∈ s or φ2 ∈ s.

(d) For all (φ1 S φ2) ∈ C F c (φ):
i. If φ2 ∈ s and ϕ = open then φ1 S φ2 ∈ s.

ii. If φ1 S φ2 ∈ s and ϕ = open then φ1 ∈ s or φ2 ∈ s.
(ii) The initial state is the subset of pairs (s,ϕ) ∈ Q, such that ϕ = si ng and does

not exists φ1 S φ2 ∈ C F c (φ) and φ1 S φ2 ∈ s. That initial state is singular
and it does not contains a since formula in positive form.

(iii) The transition relation →ts is a subset [(s1,ϕ1), (s2,ϕ2)] of Q×Q that respects
the following restrictions:

(a) ϕ1 = open and ϕ2 = si ng or ϕ1 = si ng and ϕ2 = open.
(b) The following rules express how until formulas are transferred form one

state to the next of the transition structure:
i. φ1 U φ2 ∈ s1 ∧ ϕ1 = si ng iff φ1 U φ2 ∈ s2.

ii. φ1 U φ2 ∈ s1 ∧ ϕ1 = open ∧ φ2 ∉ s1, implies (φ1 U φ2 ∈ s2 ∧ φ1 ∈
s2) ∨ φ2 ∈ s2.

iii. φ1 ∈ s1 ∧ ϕ1 = open ∧ (φ1 ∈ s2 ∨ (φ2 ∈ s2 ∧ φ1 U φ2 ∈ s2)) implies
φ1 U φ2 ∈ s1.

(c) The following are for the since formulas:
i. φ1 S φ2 ∈ s2 ∧ ϕ2 = si ng iff φ1 S φ2 ∈ s1.

ii. φ1 S φ2 ∈ s2 ∧ ϕ2 = open ∧ φ2 ∉ s2 implies φ2 ∈ s1 ∨ (φ1 ∈ s1 ∧ (φ1

S φ2) ∈ s1).
iii. φ1 ∈ s2 ∧ ϕ2 = open ∧ (φ2 ∈ s1 ∨ (φ1 S φ2) ∈ s1) implies φ1 S φ2 ∈

s2.
(iv) We use a generalized Büchi acceptance condition. For each formula φ1 U φ2

∈ C F c (φ), there is a set QFφ1Uφ2
= {(s,ϕ) |φ1Uφ2 ∉ s ∨φ2 ∈ s}.

Now, we will transform the transition structure B into a DECA Aφ. We construct

Aφ = (SAφ ,s
Aφ

0 ,ΣAφ ,XAφ ,MAφ ,γAφ , InvAφ ,→Aφ

deca ,FAφ ,πAφ ) as follows:

(i) The set of locations SAφ is the set of pairs ((s,ϕ),ς) such that:
(a) (s,ϕ) ∈ SAφ .
(b) ς is a label that is open iff ϕ = open.
(c) The labeling is propositionally consistent with the formula in s, for all

proposition p ∈ P: p ∈ ς iff p ∈ s,
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(ii) The initial location s
Aφ

0 is the subset of locations ((s,ϕ),ς) ∈ SAφ such that (s,ϕ)

= s
Aφ

0 ,
(iii) The set of symbols used by Aφ is the set of propositional symbols that appear

in the formula φ, ΣAφ = {p | p ∈C F c (φ)},
(iv) The set of clocks used by Aφ is the set of clocks that appear in the formula φ,

CAφ = {▷q
I ∪◁q

I | q ∈ Proc and I i s an i nter val },
(v) The set MAφ of monitored locations is the subset of locations ((s,ϕ),ς) ∈ SAφ

such that φ ∈ s, that is the subset of locations where the formula φ is true,
(vi) The labeling function γAφ is defined as follows: γAφ (((s,ϕ),ς)) = ς,

(vii) The clock constraints InvAφ is defined as follows: InvAφ (((s,ϕ),ς)) =ϕ, item
The transition relation is the set of pairs [((s1,ϕ1),ς1), ((s2,ϕ2),ς2)] with ((si ,ϕi ),ςi )
∈ SAφ for i ∈ {1,2}, such that: ((s1,ϕ1), (s2,ϕ2)) ∈→deca ,

(viii) We transfer in Aφ the generalized Büchi acceptance condition of the transition
structure B : FAφ is the set of sets of accepting locations {F1,F2, · · ·Fn} where
each Fi corresponds to a set of accepting states in S as follows: Fi = {((s,ϕ),ς) |
(s,ϕ) ∈ QF}.

The construction is exponential in the size of the non-real time part of the
formula, but linear in the real-time part. The test of emptiness is done by the region
construction presented in Section 6.1.6, that is exponential in the real-time part but
linear for the rest.

proposition 8. The satisfiability and validity problems for DECTL are decidable.

Proof. The satisfiability of a DECTL formula φ can be decided by constructing Aφ,
the automata for φ and testing if L (Aφ) ̸= ;. Similarly the validity of a DECTL
formula φ can be decided by constructing A¬φ, the automaton for the negation of φ
and testing if L (A¬φ) =;.

proposition 9. The automaton Aφ has n ·2O(n·log c·n) locations, where n is the length
of the formula φ (the number of propositions, modal operators and logical connec-
tives) and c is the largest constant appearing in the constraints in Aφ.

Proof. The time complexity for checking the satisfiability and validity of φ is singly
exponential in the length c of the maximal constant that appear in φ, and singly
exponential in the number of real-time operator in φ. In Particular checking the
satisfiability and validity of the DECTL formula φ are 2O(n·log c·n), where n is the
length of the formula φ (the number of propositions, real-time operators and logical
connectives) and c is the largest constant appearing in φ.

proposition 10. Satisfiability and validity of DECTL are PSPACE-complete.

Proof. The number of subformulas in φ is bounded by |φ|; the size of the closure
C F (φ) is O(n). Consequently, the number of locations of the automaton Aφ is O(2n)
and the number of clocks is O(n). The size of the maximal constant that appears
in the clock constraints of Aφ is c. From the region automaton RG(Aφ) which is a
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Büchi automaton, it follows that the emptiness problem of L (Aφ) can be checked
in time O(2n ·n! ·cn). The PSPACE upper bound follows by the observation that the
search in the region automaton can be performed without explicitly constructing
the automaton Aφ. The PSPACE-hardness of DECTL follows from the PSPACE-
hardness of propositional temporal logic with until [SC85].

proposition 11. The model-checking problem for DECTL is PSPACE-complete.

Proof. To prove PSPACE-hardness, we observe that, as with RECA, the satisfiability
problem for DECTL can be reduced to the model-checking problem: the DECTL
formula φ is unsatisfiable iff L (AU ) ⊆ L (¬;) for the universal RECA AU , which
accepts all possible TIS.

6.4 Application of DECA and DECTL

In this section, we focus on some scenarios of distributed real-time systems for
DECA. We introduce a simple communication protocol (Fault-Tolerant Protocol)
and we show how this protocol can be modeled as a DECA. We also describe the
properties of this protocol in DECTL.

6.4.1 Fault-Tolerant Protocol

Let us consider a DRTS consisting of application tasks running under an operating
system while using multiple processors interconnected over the Internet. The crucial
problem is to verify both the temporal properties (e.g., end-to-end response time)
and the logical properties (e.g., unsafe state avoidance) of the applications involving
two types of shared resources, the processor and the bus. The disadvantage of the
traditional models (TA, ECA, RECA, EventClockTL) for specifying and verifying
these systems is that they do not take into account the independent clocks of the
tasks (e.g., the clocks of a task evolve synchronously but independently of the clocks
of the other tasks). Figure 6.2 shows the communication protocol. The protocol is a
simple system consisting of two processes connected via the Internet. There are two
sender and two reader tasks running on each process. The clocks on each process
are periodically invoked when a message needs to be sent. The clock activates
the SenderTask, which sends a message to the Internet. Receipt of a message by a
process causes activation of the SenderTask task.

6.4.2 Modeling the Fault-Tolerant Protocol in DECA

Figure 6.3 shows the communication protocol modeled as a DECA. The high-level
automaton has the event clock variables and the lower-level automaton has the
events. We will refer to the processes 1 and 2 of Figure 6.2 as p and q (Pr oc =
{p, q}, and the set of propositions P= {send ,r etr y, ack}), and also to the clocks in
processes p and q , which run at different speeds. The clocks are reset by the first
monitored transition of B. At position q0 (lower lever automaton) the process waits
for the event send. When the process receives this event, its control evolves to the
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Comp1

ActivateTask

Comp2

TerminateTask

End

Return[TaskID0]?
dL[dTop]:=BCET1,
dU[dTop]:=WCET1

ActivateTaskCh!
ParTask:=TaskID1

Return[TaskID0]?
dL[dTop]:=BCET2,
dU[dTop]:=WCET2

TerminateTaskCh!

Finished[TaskID0]?

Finished[TaskID0]?

Task0
{
  Comp1;
  ActivateTask (TaskID1);
  Comp2;
  TerminateTask();
}

Fig. 4. Simple task example (Pseudo-code and Timed
Automaton Model)

values and scheduling policy CompCtrl automaton
determines the time when the computation is finished
(taking a preemption into account) and by synchro-
nization via channel Finished[ID] makes the task
model to execute the next system call or computation.
CompCtrl automaton use only one clock to measure
execution times of all tasks. This approach, described
in (Waszniowski and Hanzálek, 2005) in details, sig-
nificantly reduce the state-space of the model.

The OS kernel model consists of timed automata
representing the OS services functionality, automaton
managing the ready queue and the timed automaton
CompCtrl, and of some variables representing OS
objects. Each automaton, representing an OS service
waits in its initial state until its function is called from
a task automaton. It manipulates the tasks state, the
ready queue and other operating system objects (e.g.
events), and chooses the highest-priority task to run.

It should be noted that the preemption model is over
approximate. It means that except the real-system
behavior, it models also some additional behavior. The
over-approximation, however, preserves satisfaction
of a safety and bounded liveness properties - the most
often used ones.

4. FAULT-TOLERANT TASK MODELING

The fault tolerant methods are used to increase relia-
bility of safety-critical applications. On the other hand
all software fault tolerant methods introduce extra el-
ements into the system and make the analysis of the
system more complicated.

This chapter describes possible extension of proposed
task model by fault tolerant technique based on soft-
ware dynamic redundancy with backward recovery -
so called recovery blocks (Burns and Wellings, 1990).
Recovery block is block of code implemented in sev-
eral versions - the preferred primary module and sev-
eral alternative modules used in the case of primary
module failure. At the entrance to the block, a re-
covery point is established, where the system state is
saved for later use, in the case of error detection. At
the block exit, an acceptance test is evaluated, testing
whether the result is acceptable. The acceptance test
failure results in the program being restored to the

recovery point at the beginning of the block and an al-
ternative module being executed. This behavior can be
described by the following pseudo-code and modeled
by the task model fragment both depicted in Figure
5. Figure demonstrates modeling of the computation
RecoveryBlockComp implemented as a recovery
block. Notice that the primary and the alternative mod-
ules are modeled by the same location. They are dis-
tinguished by different execution times (L Primary
/ U Primary and L Alternative / U Alternative).
The fault occurrence resulting in the acceptance test
failure (modeled by AcceptanceT estResult[ID] :=
ERR) is modeled by another timed automaton.

EsatblishRecoveryPoint

RecoveryBlockComp

AcceptanceTest

Recovery

EstablishRecoveryPointCh!
ParTask:=ID

Return[ID]?
dL[dTop]:=L_Primary, dU[dTop]:=U_Primary

TerminateTaskCh!
AcceptanceTestResult[ID]==OK

Finished[ID]?
AcceptanceTestResult[ID]==ERR

RecoveryCh!

ParTask:=ID

Return[ID]?
dL[dTop]:=L_Alternative, dU[dTop]:=U_Alternative

Ensure (AcceptanceTestResult==OK)
by
  RecoveryBlockComp_Primary;
else by
  RecoveryBlockComp_Alternative;
else Err;

.

.

.

.

.

.

Fig. 5. Task Pseudo-code and Model fragment - com-
putation implemented as recovery block with one
alternative module

5. CASE STUDY

This chapter demonstrates the model checking ap-
proach on a simple system consisting of two pro-
cessors interconnected via CAN. Two tasks and two
interrupt service routines are running on OSEK/VDX
compliant operating system on each processor. Timer
interrupt service routine (T imerISR) is periodi-
cally invoked by a timer tick. T imerISR activates
the highest priority task SenderTask, which sends
a message to CAN. Receiving a message by pro-
cessor cause an interrupt invoking service routine
ReceiveISR that activates the lowest priority task
ReaderTask. The system structure is depicted in Fig-
ure 6.

Processor 1 Processor 2

SenderTask

ReaderTask
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MsgID1

MsgID2
SenderTask

ReaderTask

RTOS RTOS

Fig. 6. System structure overview
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Thischapterdemonstratesthemodelcheckingap-
proachonasimplesystemconsistingoftwopro-
cessorsinterconnectedviaCAN.Twotasksandtwo
interruptserviceroutinesarerunningonOSEK/VDX
compliantoperatingsystemoneachprocessor.Timer
interruptserviceroutine(TimerISR)isperiodi-
callyinvokedbyatimertick.TimerISRactivates
thehighestprioritytaskSenderTask,whichsends
amessagetoCAN.Receivingamessagebypro-
cessorcauseaninterruptinvokingserviceroutine
ReceiveISRthatactivatesthelowestprioritytask
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ure6.

Processor 1Processor 2

SenderTask

ReaderTask

CAN

MsgID1

MsgID2
SenderTask

ReaderTask

RTOSRTOS

Fig.6.SystemstructureoverviewProcess 1

SenderTask

ReaderTask

Internet

Msg1

Msg2

Process 2

SenderTask

ReaderTask

Figure 6.2: Fault-Tolerant Protocol

   

  

s2

s0

   

  

Communication Protocol
High Level Automaton A Lower Level Automaton B

q0

q2

way{init}

{done}

send

retry

ack

;

reset

yp
B  5

yq
B  3

yp
B � 5

yq
B � 3

      s1 q1

Figure 6.3: DECA Model of the Protocol

monitored location q1 and the clock constraint y p
B
≤ 5 of the high-level automaton

imposes that the message must be sent before 5 time units for the process p or
the clock constraint y q

B
. ≤ 3 of the high-level automaton imposes that the message

must be sent before 3 time units for the process q . So this requirement imposes
that the message takes less than 5 time units to go done for the process p and the
message takes less than 3 time units to go done for the process q when it receives
the information that a message is being sent. In q1, the control must wait at least 5
time units before crossing the edge to location q2, or the control must wait at least 3
time units before crossing the edge to location q2. At q2, the control must wait for
the ack signal before crossing the edge to location q3.

6.4.3 Properties of the Fault-Tolerant Protocol in DECTL

The property that a message is followed by an ack within 5 time units for the process
p can be described by DECTL using the formula:
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□(i ni t →▷p
≤5done)

The property that a message is followed by an ack within 3 time units for the
process q can be described by DECTL by the formula:

□(i ni t →▷q
≤3done)

There are other applications in various domains such as hardware analysis,
networking protocols, the medical industry, aeronautics, and biology:sClock Difts Correction Mechanism: The temporal accuracy of information in

a DRTS depends on the accuracy of the global time. This precision of the
distributed real time depends on the fluctuation of the message transmission
delay, the clock drifts and the global clock mechanism. A distributed real-time
communication system must guarantee message transmission within a con-
stant transmission delay with bounded variation and clock drift. The duration
of message transmission over the network depends on the assumptions made
about the network traffic. The focus in this scenario is the generation of a
fault-tolerant global time base of high precision in a DRTS with clock drifts
(local clocks). Therefore, we can use DECA to model this scenario [KAH06].sGlobal Positioning System: Satellite networks (geosynchronous) have always
had some undeniable advantages over other networks: natural coverage and
rapid deployment in the event of natural disasters, for example. The main
applications of satellite communications remain maritime communications,
disaster relief, Internet access in remote areas, and mobile communications.
Satellite systems play a very important role in interconnecting heterogeneous
networks to provide global coverage to users. To be fully integrated into the
global network, satellite systems will be able to efficiently route the commu-
nication protocol, TCP/IP, and a wide variety of applications with the same
level of performance as networks on land. Satellite systems often require fairly
precise communication and independent relationship between spacecraft
local clocks. In the traditional method of achieving communication, a ground
station makes time offset measurements to the various spacecraft clocks and
then updates the time and frequency of each satellite as needed. Although
simple to implement, disadvantages of the traditional approach include the
heavy workload on the ground station, the need for multiple ground stations
for new satellites in different orbital locations, and unaccounted for delays in
atmospheric propagation. In the new method for achieving communication,
a ground station only needs to control the time and frequency of each satellite,
and its workload, and thus the system’s time-related operating costs, are kept
to a minimum. Moreover, since inter-satellite communication is achieved
without transmission through the ionosphere, atmospheric propagation de-
lays cannot disturb the independent relationship between the local clocks of
the satellites. Therefore, we can use DECA to model this scenario [Ash03].sZigBee Use For Wireless Network: ZigBee is a transmission standard for ma-
chine to machine wireless network communication. ZigBee uses the IEEE
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802.15.4 PHY and MAC layers. Data rates are relatively low, between 20 and
250 kbps. ZigBee operates primarily in the 2.4 GHz frequency band with 16
channels. Its range is tens of meters. A ZigBee network can contain up to 254
nodes per cell, in addition to a node that manages it, called a coordinator.
The IEEE 802.15.4 standard supports two modes of operation managed by the
network coordinator: unmarked and marked mode. The super frame periodi-
cally issued by the network coordinator consists of an active portion, during
which the coordinator interacts with its child nodes, and an inactive portion,
during which all nodes enter a low-power mode. In the wireless network, the
problem of distributed real-time becomes much more difficult. Nodes may be
far from any wired infrastructure, and environmental factors make sensors
susceptible to failure and clock drift. In fact, there has been a lot of work in
this area, such as sensor networks, the medical industry, and aeronautics. The
problem involves two or more processors whose clocks are not synchronized.
That is, when a processor starts, each clock starts counting up from 0; however,
the processors may start at different times. The difference between the times
at which the processors start is bounded by some positive real parameter.
Therefore, we can use DECA to model this scenario [ERGM09].

6.5 Strengths and Weaknesses of the Formalisms

This section aims at showing the strengths and weaknesses of the two formalisms
presented in this chapter.

6.5.1 Strengths

DECA are closed under all boolean operations, and their timed language inclu-
sion problem is decidable (more precisely, PSPACE-complete), allowing stepwise
refinement. Existential and universal timed languages are decidable. DECTL is
a real-time logic with multiple observers, each with its time evolution. This logic
can be model-checked by translating a DECTL formula into a DECA automaton.
DECTL is also decidable (more precisely PSPACE-complete).

6.5.2 Weaknesses

ECA is a widely recognized subset of TA, known for its remarkable theoretical
properties, in particular its determinizability (DECA inherits the same theoretical
properties of ECA). However, despite the extensive research and implementation
of TA, the concrete implementation of ECA remains challenging. This is due to the
inherent complexity of adapting zone-based extrapolation techniques, which are
crucial in the context of TA, to effectively handle the intricacies of ECA. To address
this issue, Geeraerts et al., [GRS11] [GRS14] proposed a promising solution based on
the use of a zone-based extrapolation technique. Geeraerts et al., [GRS11] [GRS14]
showed the fundamental differences between predicting clocks and usual clocks. In
particular, they showed that there is no finite time-abstract bisimulation for ECA in
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general, thus emphasizing the unique nature of predicting clocks in this context. In
the context of TA, it is worth noting that the concept of region equivalence forms
a finite time-abstract bisimulation. Consequently, a translation from ECA to TA
has been proposed by Alur et al. [AFH94]. However, it should be acknowledged that
this translation may not be efficient, as it can lead to an exponential increase in the
number of clocks and states [AFH94].

Indeed, recent studies have highlighted that simulation-based techniques [GMS19]
[BGH+22] exhibit superior effectiveness [Bou04b] and efficiency [GMS19] [GMS20]
[GMS18] [BGH+22] in comparison to zone-based extrapolation techniques for reach-
ability analysis in ECA. These findings emphasize the advantages of simulation-
based techniques when it comes to verifying reachability in ECA. Additionally, in
a recent study by Akshay et al. [AGGS22], a zone-based reachability algorithm was
proposed specifically for diagonal-free ECA. However, it is important to note that
no implementation details were provided alongside their proposal. Therefore, since
DECA is an extension of ECA and RECA, the same difficulty of region equivalence
and finite time-abstract bisimulation will be present in DECA.

Another issue up to now is that there are no tools supporting ECA (and RECA)
with continuous semantics for modeling and verifying DRTS, despite clear practical
interests [RDS+15]. Several papers [MNP06] [BRS13] have emphasized the need for
tools with continuous semantics. The absence of tools for continuous semantics
can be attributed to a limited practical understanding and utilization of formalisms
that deal with continuous semantics, such as MITL, EventClockTL, Signal Temporal
Logic (STL) [MVS+18]. There are already translations from MITL to TA in the
literature [MNP06] [BRS13] [BGHM17b]. However, the translations are complex, in
spite of some simplified constructions, such as [MNP06] [BRS13] [BGHM17b].

Another issue present in DECA and DECTL (also ECA, MTIL, RECA, and Event-
ClockTL) is the choice of a continuous semantics (as opposed to a pointwise seman-
tics) for modeling and verifying DRTS. Although pointwise semantics offer simplicity
and are currently more prevalent, largely due to the popularity of TA, there is an on-
going argument [HR04] [HRS98] that continuous semantics provides a more faithful
representation of time. Indeed, continuous semantics has been widely adopted in
several domains, such as hybrid systems and synthetic biology [RDS+15]. Beyond
practical considerations, the distinction between these two semantics is significant
because it changes the expressive power of logic. This highlights the importance of
exploring and using continuous semantics formalisms to capture the subtleties of
time more accurately and comprehensively. However, interpreting and evaluating
formulas over continuous time intervals can be computationally intensive, requiring
sophisticated algorithms, numerical techniques, and efficient data structures to
handle the large amounts of temporal data. Developing robust and efficient tools
that can handle the complexity of continuous semantics can require considerable
effort and expertise. One way to avoid the complexity involved in implementing
a tool based on DECA and DECTL is to perform a translation from DECTL to TA
(or signal automata), such as [BGHM17b]. Brihaye et al., [BGHM17b] [BGHM17a]
proposed a translation from MITL with continuous semantics to TA. This transla-
tion can be used as the basis for developing a model checking tool that translates
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a MITL formula into one or more TA, integrates these automata with a network of
TA, and performs an emptiness check to verify the desired properties. However,
it is important to note that there is currently no existing automated tool that fully
supports this workflow. However, due to the high cost of translating MITL into TA
and the need to construct its entire deterministic region automaton, this algorithm
is unlikely to be amenable to implementation [BEG+16].

6.6 Wrap up

This chapter introduces Recursive Event Clock Automata (RECA) with such dis-
tributed (a.k.a. independent) clocks, giving rise to Distributed Recursive Event Clock
Automata (DECA). We have shown that DECA are determinizable, i.e. closed un-
der complementation, and thus that their language inclusion problem is decidable
(more precisely, PSPACE-complete). We also showed the decidability and regularity
of their universal languages. In the second section, we have studied the correspond-
ing timed languages of DTA and icTA. In third section, we extended EventClockTL
with distributed clocks. This gives us the (Recursive) Distributed Event Clock Tem-
poral Logic (DECTL), which we have shown to be PSPACE-complete. In the fourth
section, we have shown some examples of distributed real-time models built over
DECA and DECTL. Finally, in the fifth section, we have shown the strengths and
weaknesses of DECA and DECTL.
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Due to implementation limitations encountered with the zone-based techniques
and model checker tool for DECA and DECTL, as discussed in Section 6.5, in this
chapter, we will define the formalisms of (Distributed) Multi-Timed Automata (MTA)
and Distributed Timed Modal Logic (MLν) in the context of TT for DRTS. MTA
are a variant of TA inspired by Distributed Timed Automata (DTA) and TA with
Independent Clocks (icTA) and proposed by [Kri99,ABG+08,OLS11] to model DRTS.
Indeed, DRTS involves multiple interconnected real-time processes where each
process uses its local clocks running at its rate. The local time rates associated with
each process may cause actions generated at the same instant to have different
timestamps at each local clock. Because of the complex interactions between local
timing constraints and the distributed behavior of DRTS, specifying and analyzing
the correctness of these systems is costly and arduous. Furthermore, it is well
known that TA and their variants (DTA and icTA) are neither determinizable nor
complementable and their inclusion problem is undecidable [AD94]. In [OLS11] was
defined a determinizable formalism for modeling non-deterministic DRTS. MLν is a
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logic that allows the specification of both the local behavior of the components and
multiple local times in timed temporal specifications, facilitating the identification
of multiple interactions between distributed processes.MLν describes properties of
states in a Multi-Timed Labelled Transition Systems (MLTS) over a set of actions.
We define its syntax and multi-timed semantics, and illustrate the most important
features of MLν through the specification of DRTS. The Satisfiability and validity
problems for MLν are decidable.

This chapter is structured as follows. In the first section 7.1, we propose to model
DRTS with Multi-timed Automata (MTA), an extension of TA and icTA, whose
execution traces can be modeled as sequences of pairs, where each pair contains
an action and a tuple of timestamps. Thus, each action has its tuple of local time
of occurrence for each process belonging to the modeling DRTS. We then propose
to extend the theory of Timed Labeled Transition Systems (TLTS) to Multi-Timed
Labeled Transition Systems (MLTS) and relate it to our alternative operational
semantics for MTA. In the second section 7.2, we propose to reconsider the notion
of timed bisimulation on these automata, leading to multi-timed bisimulation. In
the third section 7.3 we have shown the parallel composition between MTA. In the
fourth section 7.4, we prove its decidability and present an EXPTIME algorithm for
deciding whether two MTA are multi-timed bisimilar. In the fifth section 7.5, we
propose MLν, an extension of Lν that relies on a distributed semantics for Timed
Automata (TA): instead of considering uniform clocks over the distributed systems,
we let time vary independently in each TA. We define the syntax and semantics of
MLν over executions of MLTS with such semantics, and we show that its model
checking problem against MLν is EXPTIME-complete. In the sixth section 7.6, we
present some scenarios of distributed real-time systems for MTA and MLν. Finally,
in the eighth section 7.7, we show the strengths and weaknesses of MTA and MLν.

7.1 An Alternative Semantics for DRTS

TA and MTL have been used to specify and model RTS, but these formalisms are
not expressive enough to specify and analyze the correctness of DRTS for two main
reasons. First, TA assumes perfectly synchronized clocks, while DRTS uses local
clocks. Second, the standard semantics of TA is sequential and based on a Timed
Labelled Transition System (TLTS), i.e. a run of a TA is given by a sequence of actions
and timestamps, while local clocks give rise to multiple timestamps. However, a
distributed semantics for TA and network of TA has been introduced in [BC13], but
the associated semantics remains in the classical setting of perfect clocks evolving at
the same rate.

Here we propose Multi-Timed Automata (MTA), a variant of TA inspired by
Distributed Timed Automata (DTA) and Timed Automata with Independent Clocks
(icTA), and proposed by [Kri99, ABG+08, OLS11] to model DRTS. In fact, DRTS
involves multiple interconnected real-time processes, each of which uses its own
local clocks running at its own rate. The local time rates associated with each
process can cause actions generated at the same time to have different timestamps
at each local clock. An execution trace in our MTA is denoted by a sequence of
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pairs (i.e., an action and a tuple of timestamps). Thus, in each execution trace, each
action has its own tuple of the local time of occurrence for each clock. Thus, this
tuple of timestamps allows representing the distribution of the local time. It then
becomes possible to analyze the local behavior of the components independently.
We also propose Multi-Timed Labelled Transition Systems (MLTS), an extension
of the classical TLTS to include the notion of multiple local times, and we propose
efficient algorithms for bisimulation using partition refinement techniques [PT87].

Furthermore, using our alternative semantics of MTA allows us to describe the
behavior of local clocks. We also extend the classical theory of timed bisimulation
with the notion of multi-timed bisimulation. We present two algorithms: (1) a forward
reachability algorithm for the lockstep composition of two MTA, which will help
us reduce the state space exploration of our second algorithm, and (2) a decision
algorithm for multi-timed bisimulation using zones [BY04]. Multi-timed bisimula-
tion cannot be computed with the standard partition refinement algorithm [PT87].
Instead, our algorithm successively refines a set of zones such that each zone eventu-
ally contains only multi-timed bisimilar state pairs. Furthermore, we show that our
algorithm is EXPTIME-complete. Since TA is a special case of MTA, and since timed
bisimulation over TA [WL97] [TY01] can be regarded as a special case of multi-timed
bisimulation, our decision algorithm also applies to this classical case.

7.1.1 Rates

As explained above, TA assumes that clocks are perfectly synchronous, which cannot
always be guaranteed in distributed real-time applications where clocks may drift
(count time at different rates) due to environmental conditions such as temperature,
humidity, pressure, and aging. Let Pr oc be a finite and non-empty set of processes.
Often, the behavior and properties of DRTS depend on the local time rates at the
processes. Each process may have a different local time evolution. To model this, we
assume that the local time evolution can be represented as a function mapping the
reference time to the local time (see definition of 57).

7.1.2 Multi-Timed Actions

An execution of a DRTS can be described by a multi-timed word, which is a sequence
of actions with multiple timestamps indicating that they should be executed at
different times. A multi-timed language describes a set of executions as a set of
multi-timed words.

Let Pr oc be a non-empty set of processes, then, we denote by RPr oc
≥0 the set of

functions from Pr oc to R≥0, that we call tuples. A tuple d⃗ ∈ RPr oc
≥0 is smaller than d⃗ ′,

noted, d⃗ < d⃗ ′ iff ∀p ∈ Pr oc d⃗p ≤ d⃗ ′
p and ∃q ∈ Pr oc d⃗q < d⃗ ′

q . A Monotone Sequence

of Tuples (MST) is a sequence d⃗ = d⃗1d⃗2 · · · d⃗n of tuples ofRPr oc
≥0 where : ∀ j ∈ 1 · · ·n−1,

d⃗ j < d⃗ j+1 or d⃗ j = d⃗ j+1.

Definition 71. A multi-timed word on Σ is a pair θ = (σ, d⃗) where σ=σ1σ2 . . .σn is a
finite word σ ∈ Σ∗, and d⃗ = d⃗1d⃗2 . . . d⃗n is a MST of the same length. This is the analog
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Figure 7.1: Local clocks and reference time

of a timed word [AD94]. A multi-timed word can equivalently be seen as a sequence of
pairs in Σ×RX

≥0.

Example 20. In Figure 7.1, we consider three processes (i.e. Pr oc = {p, q,r }) with one
clock each (i.e., π(xp ) = p, π(y q ) = q, π(zr ) = r ). The top line represents the reference
time at which three actions {a1, a2, a3} occur at different times. The dotted lines below
capture the time elapsed as perceived by each process: a white dot represents the local
instant at which the action is perceived by a given process. For example, a1 is perceived
at tr 1 by r and tp1 by p. Since local times are monotone, strictly increasing sequences
of instants, the way these local times are perceived is always similar (as conveyed
by the uniform way actions are related to local instants by simple arrows). For the
three actions above, we get a multi-timed word θ = ((a1, tp1, tq1, tz1)(a2, tp2, tq2, tr 2)
(a3, tp3, tq3, tr 3)) where (tpi , tqi , tr i ) ∈ RPr oc

≥0 for all i ∈ {1,2,3}, are related to the
reference time according to the arrows in Figure 7.1.

7.1.3 Multi-Timed Labeled Transition Systems (MLTS)

Here we present our formalism for reasoning about behavioral and temporal proper-
ties of DRTS using operational semantics based on TLTS. To represent the temporal
properties of DRTS, we need to extend TLTS (i.e., an alternative semantics) with
the ability to represent local elapsed time. Therefore, we propose an alternative
semantics to the standard semantics for TLTS: specifically, a run in our alternative
semantics is denoted by a sequence of pairs (i.e., an action and a tuple of times-
tamps). Thus, in each run, each action has its own tuple of local time of occurrence
for each local clock in such a modeling DRTS. Therefore, this tuple of timestamps
allows to represent the distribution of the local time for each local clock belonging
to the modeling DRTS. Our alternative semantics is defined in terms of runs that
record the state and local clock values at each transition point traversed during
the consumption of a multi-timed word. Instead of observing actions at a global
time, a multi-timed word records the time seen by each local clock. The actions that
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occur over a set of local clocks can be ordered by their time of occurrence (i.e., their
timestamps).

Definition 72 (Multi-Timed Labelled Transition System). A Multi-Timed Labelled
Transition System (MLTS) over a set of processes Pr oc is a tuple M = (Q,QF ,q0,Σ,
→ml t s ) such that:

(i) Q is a set of states,
(ii) q0 ∈ Q is the initial state,

(iii) Σ is a finite alphabet,
(iv) QF is a set of final states,
(v) →ml t s ⊆ Q× (Σ⊎RPr oc

≥0 )×Q is a set of transitions.

The transitions from state to state of a MLTS are noted in the following way:

(i) A discrete transition (q, a, q ′) is denoted q
a−→ q′, if a ∈ Σ,

(ii) A delay transition (q, d⃗ , q ′) is denoted q
d⃗−→ q′, if d⃗ ∈ RPr oc

≥0 .

A path (or run) of M can be defined as a finite sequence of moves, where discrete

and delay transitions alternate: ρ = q0
d⃗1−→ q ′

0
a1−→ q1

d⃗2−→ . . . qn−1
d⃗n−−→ q ′

n−1
an−→ qn ,

where ∀ 0 ≤ i ≤ n, qi ∈Q, ∀1 ≤ j ≤ n, d⃗ j ∈ RPr oc
≥0 , q ′

j ∈ Q and a j ∈Σ. A path is initial
if it starts in q0. A path is accepting if it starts in initial state q0 and ends in a final
state q f ∈ QF . The multi-timed word of ρ is θ = ((a1, t⃗1), (a2, t⃗2) . . . , (an , t⃗n)), where t⃗i

=
∑i

j=1 d⃗ j . A multi-timed word θ is accepted by M , called multi-timed language, if
and only if there exists an accepting run whose multi-timed word is θ. The language
of M , denoted L (M ), is defined as the set of all finite multi-timed words accepted
by M . Note that MLTS are a proper generalization of TLTS: each TLTS can be seen
as a MLTS with a single process.

Furthermore, our MLTS must satisfy the following multi-timed requirements:

(i) Multi-determinism: for all q , q ′, q ′′ ∈ Q and for all d⃗ ∈ RPr oc
≥0 , if q

d⃗−→ q′ and

q
d⃗−→ q′′ then q ′ = q ′′.

(ii) Multi-0̄-Delay: Let ( f0̄ : Pr oc 7→ 0) ∈ RPr oc
≥0 be the hull-tuple such that for all q ,

q ′ ∈ Q, q
f0̄−→ q′ ≡ q = q ′.

(iii) Multi-Additivity: for all q , q ′, q ′′ ∈ Q and for any d⃗ , d⃗
′ ∈ RPr oc

≥0 , if q
d⃗−→ q′ and

q′ d⃗
′

−→ q′′ then q
d⃗+d⃗

′
−−−→ q′′.

(iv) Multi-Continuity: for all q , q ′ ∈ Q and d⃗ ∈ RPr oc
≥0 , if q

d⃗−→ q′ then there exists τ

∈ Rates, such that for a reference time t = 1, τ(t) = d⃗ and for all t ≤ 1, there

exists q ′′ such that q
τ(t )−−→ q′′ and q′′ d⃗−τ(t )−−−−→ q′.

Example 21. For example, consider the two transition systems in Figure 7.2: (a) a
MLTS on the left (M1) and (b) two TLTS on the right (M2 and M3) with the finite
input alphabetΣ= {a,b,c}. In brief, M2 and M3 could be considered as the projection
of M1 on process 1 and 2.
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Figure 7.2: (a) A MTLS (M1). (b) Two TLTS (M2) and (M3)

7.1.4 Multi-timed Automata

Distributed Timed Automata (DTA) [Kri99, ABG+08] consist of several local timed
automata called processes. Each process has its own clocks. The clocks of the same
process evolve synchronously, but independently of the clocks of other processes.
In [ABG+08], DTA are not studied much. Instead, their product is computed first,
resulting in the class of icTA. Inspired by icTA and DTA [Kri99, ABG+08], we intro-
duce Multi-timed Automata (MTA) to model DRTS. The semantics of a multi-timed
automaton is given by our MLTS.

Definition 73 (MTA). A MTA is a pair A = (B,π) over Proc where :
(i) B = (S, s0,Σ, X ,→t a , Inv,F ) is a TA,

(ii) π : X → Proc maps each clock to a process.

Definition 74. Given π : X → Proc, a clock valuation ν : X →R≥0 and d⃗ ∈ RPr oc
≥0 : the

valuation ν+π d⃗ is defined by (ν+π d⃗)(x) = ν(x)+ d⃗π(x) for all x ∈ X .

Definition 75 ( Semantics of Multi-timed Automata (MTA)). Given a MTA A =
(S, s0,Σ, X ,→t a , Inv,F,π) over Proc and τ ∈ Rates, the alternative semantics of A

is given by a MLTS over Proc, denoted by MLTS(A , τ) = (Q, q0, QF , Σ,→ml t s ). The
set of states Q consists of triples composed of a location, a clock valuation and lastly
the reference time: Q = {(s,ν, t) ∈ S×RX

≥0 ×R≥0 | ν |= Inv(s)}. The set of final states
QF consists of triples {(s f ,ν, t) ∈ F×RX

≥0 ×R≥0 | ν |= Inv(s f )}. The starting state is
q0 = (s0,ν0,0), where ν0 is the valuation that initializes all the clocks to zero. Σ is the
alphabet of A . The transition relation →ml t s is defined by:

(i) A transition (qi , d⃗ , q ′
i ) is denoted qi

d⃗−→ q ′
i , and is called a delay transition,

where qi = (si ,νi , ti ), q ′
i = (si ,νi+πd⃗ , ti+1), d⃗ = τ(ti+1)−τ(ti ) and∀t ∈ [ti , ti+1] :

νi +π (τ(t)−τ(ti )) |= Inv(si ).
(ii) A transition (qi ,a, qi+1) is denoted qi

a−→ qi+1, and is called a discrete transition,
where qi = (si ,νi , ti ), qi+1 = (si+1,νi+1, ti+1), a ∈ Σ, there exists a transition
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Figure 7.3: A Multi-timed Automaton M

(si , a,φ,Y , si+1) ∈ →ta, such that νi |= φ, νi+1 = νi [Y ← 0], νi+1 |= Inv(si+1),
ti = ti+1.

A path of A for τ ∈ Rates with its alternative semantics is an initial path in
MLTS(A ,τ) where discrete and continuous transition alternate. A multi-timed word
is accepted by A for τ ∈ Rates iff it is accepted by MLTS(A ,τ). The multi-timed
language accepted by A for τ is denoted as L (A ,τ).

Example 22. Figure 7.3 above shows a MTA M with the finite alphabetΣ= {a,b,c,d},
the set of processes Pr oc = {p, q}, the set of clocks X = {xp , y q } and τ = (2t , t ) (i.e., τp (t )
= 2t and τq (t ) = t). A run of M on a multi-timed word θ = ((a, (2.0,1.0))(b, (3.0,1.5))

(c, (4.2,2.1))(d , (6.0,3.0))) is given by (s0, [xp = 0.0, y q = 0.0], 0.0)
(2.0,1.0)−−−−−→ (s0, [xp =

2.0, y q = 1.0],1.0)
a−−→ (s1, [xp = 2.0, y q = 0.0],1.0)

(1.0,0.5)−−−−−→ (s1, [xp = 3.0, y q = 0.5],1.5)
b−−→ (s2, [xp = 3.0, y q = 0.5],1.5)

(1.2,0.6)−−−−−→ (s2, [xp = 4.2, y q = 1.1],2.1)
c−−→ (s1, [xp =

4.2, y q = 0.0],2.1)
(1.8,0.9)−−−−−→ (S1, [xp = 6.0, y q = 0.9],3.0)

d−−→ (s0, [xp = 0.0, y q = 0.9],3.0).

7.2 Multi-timed Bisimulation

In the earlier paper [Cer93], the author provided timed equivalences in which equiv-
alent processes must completely match in their timing properties as well as in
their functional behavior. However, the timing properties of any two processes
may not be completely equivalent, because each local process may not compute at
the same speed, and local clocks may not run at the same rate. Then it would be
desirable to treat two different processes as equivalent only if their behaviors are
completely matched. Therefore, we develop such equivalences by extending the clas-
sical definition of timed bisimulation [Cer93] towards our alternative semantics. Our
motivation for extending the classical definition of timed bisimulation is twofold:
first, efficient algorithms for checking timed and time-abstract bisimulation have
been discovered [Cer93] [WL97]. However, these algorithms are based on sequential
semantics (i.e., TLTS and TA). Second, verifying the preservation of distributed
temporal behavior in DRTS could be used to cope with the combinatorial explosion
of the size of the model.
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7.2.0.1 Strong Multi-timed Bisimulation

Let M1 and M2 be two MLTS over the same set of actions Σ and processes Pr oc . Let
QM1 (resp., QM2 ) be the set of states of M1 (resp., M2). Let R be a binary relation
over QM1

× QM2
. We say that R is a strong multi-timed bisimulation whenever

the following transfer property holds (note that technically this is simply strong
bisimulation over Σ ⊎ RPr oc

≥0 ):

Definition 76 ( Strong Multi-timed Bisimulation). A strong multi-timed bisimu-
lation over MLTS M1, M2 is a binary relation R ⊆QM1 ×QM2 such that, whenever
qM1

RqM2
, the following holds:

(i) For every a ∈ Σ and for every discrete transition qM1

a−−→M1 q′
M1

, there exists

a matching discrete transition qM2

a−−→M2 q′
M2

such that q′
M1

Rq′
M2

and vice
versa.

(ii) For every d⃗ = (d1, . . . ,dn) ∈ RPr oc
≥0 , for every delay transition qM1

d⃗−−→M1 q′
M1

,

there exists a matching delay transition qM2

d⃗−−→M2 q′
M2

such that q′
M1

Rq′
M2

and vice versa.

Two states qM1
and qM2

are multi-timed bisimilar, written qM1
≈ qM2

, iff there is
a multi-timed bisimulation R such that qM1

RqM2
. M1 and M2 are multi-timed

bisimilar, written M1 ≈ M2, if there exists a multi-timed bisimulation relation R

over M1 and M2 containing the pair of initial states. Furthermore, for all qM1
R qM2

,
if qM1

∈ QF
M1

then qM2
∈ QF

M2
.

As a consequence of Definition 75, the notion of multi-timed bisimulation ex-
tends to MTA and we have the following definition:

Definition 77 (Multi-timed Bisimilar). Let A and B be two MTA. We say the au-
tomata A and B are multi-timed bisimilar, denoted A ≈B, iff∀ τ∈Rates MLTS(A ,
τ) ≈ MLTS(B,τ).

When there is only one process, the multi-timed bisimulation is the usual timed
bisimulation.

Example 23. Consider the two MTA Ap and Aq in Figure 7.4 with the alphabet
Σ= {a}, the set of processes Pr oc = {p, q}, the set of clocks X = {xp , y q } and τ = (t 2,3t )
i.e. τp (t ) = t 2 and τq (t ) = 3t . Ap performs nondeterministically the transition with
the guard xp ≤ 2, the action a, resets clock xp to 0 and enters location s1. Similarly, Aq

is the same but with y q . We will show that these MTA are not multi-timed bisimilar
(Definition 76) even if their underlying TA are bisimilar (and even isomorphic):
We have (s0, [xp = 0.0],0.0) in MLTS(Ap ,τ) and (r0, [y q = 0.0],0.0) in MLTS(Aq ,τ).

Then, since Ap can run the delay transition (s0, [xp = 0.0],0.0)
(1,3)−−−→ (s0, [xp = 1.0],1.0)

and then (s0, [xp = 0.0],0.0)
a−−→ (s1, [xp = 1.0],1.0). Aq can only match this transition

with (r0, [y q = 0.0],0.0)
(1,3)−−−→ (r0, [y q = 3.0],1.0), where MLTS(Aq ,τq ) cannot fire a.
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Figure 7.4: Two multi-timed automata Ap and Aq

7.3 Parallel Composition of MTA

Normally, a DRTS consists of several processes that can be modeled independently.
Their interaction is determined by a parallel composition operator (denoted by ∥)
that merges them into a single process (i.e., in our case, a multi-timed automa-
ton). MTA can interact in two ways: through synchronous discrete transitions
and through asynchronous delay transitions (i.e., time is local to each automaton).
Parallel composition can also be defined at the MLTS level.

Definition 78 (Composition of MLTS). Let M1 = (QM1
,QF

M1
, q0

M1
, ΣM1 , →M1 ) and

M2 = (QM2
,QF

M1
,q0

M2
,ΣM2 , →M2 ) be two MLTS over the set of processes Pr ocM1 and

Pr ocM2 . The parallel composition M1 ∥ M2 over the set of processes Pr oc= Pr ocM1

∪ Pr ocM2 is M3 = (QM3
,QF

M3
,q0

M3
,ΣM3 ,→M3 ) where:

(i) QM3
= QM1 × QM2 ,

(ii) QF
M3

= QF
M1

× QF
M2

,

(iii) q0
M3

= (q0
M1

, q0
M2

),
(iv) ΣM3 = ΣM1 ∪ ΣM2 ,
(v) →M3 ⊆ QM3

× (ΣM3 ⊎RPr oc
≥0 )×QM3

is the set of transitions given by:

(a) A discrete transition ((qM1 , qM2 ), a, (q ′
M1

, q ′
M2

)) is denoted (qM1 , qM2 )
a−→

(q ′
M1

, q ′
M2

), if a ∈ ΣM1 ∪ ΣM2 and ((qM1 , qM2 ), a, (q ′
M1

, q ′
M2

)) ∈→M3 and,

(b) A delay transition ((qM1 , qM2 ), d⃗ , (q ′
M1

, q ′
M2

)) is denoted (qM1 , qM2 )
d⃗−→

(q ′
M1

, q ′
M2

), if d⃗ ∈ RPr oc
≥0 and ((qM1 , qM2 ), d⃗ , (q ′

M1
, q ′

M2
)) ∈→M3 .

Definition 79 (Parallel Composition of MTA). Let A and B be two TA. Let A ′ =
(A ,πA ) and B′ = (B,πB) be two MTA over the set of processes Pr ocA and Pr ocB .
We assume Pr ocA and Pr ocB are disjoint. The parallel composition of A ′ and B′,
written MTA (A ′ ∥ B′) = (A ,πA ) ∥ (B,πB) = ((A ∥ B),πA ∪ πB) over Pr ocA ∪
Pr ocB creates a new MTA C ′ = (C ,π) over Pr oc where C = A ∥ B, π = πA ∪ πB ,
Pr oc = Pr ocA ∪ Pr ocB and C = (SC ,s0

C
,ΣC ,XC ,→ta

C
, InvC ,FC ) where:

(i) SC = SA × SB ,
(ii) s0

C
= (sA , qB),

(iii) ΣC = ΣA ∪ ΣB ,
(iv) XC = XA ∪ XB ,
(v) →ta

C
⊆ SC ×ΣC ×Φ(XC )×2XC ×SC is the transition relation given by: for a

∈ ΣA ∪ ΣB , if (sA , a,φA ,YA , s′
A

) ∈ →t a
A

and (sB , a,φB ,YB , s′
B

) ∈ →t a
B

then
((sA ,sB), a,φA ∧φB ,YA ∪YB , (s′

A
,s′

B
)) ∈→ta

C
,

(vi) InvC (sA , sB) = InvA (sA )∧ InvB(sB) for all sA ∈ SA and sB ∈ SB ,
(vii) FC = FA × FB ,
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Definition 80. Let A and B be two MTA. For any valuations νA and νB over disjoint
sets of clocks XA and XB , there exists a unique valuation νA ∥B over XA ⊎ XB with
νA ∥B = νA ⊎ νB . Given νA ∥B(x), νA and νB can be recored as νA ∥B(x)⌋XA

and
νA ∥B(x)⌋XB

Let TA A and B be two TA and let C = (A ,πA ) and D = (B,πB) be two MTA
over the set of processes Pr ocC and Pr ocD . Given two states qC = (sC ,νC , tC )
of MLTS(C ,τ), and qD = (sD ,νD , tD) of MLTS(D,τ) for any τ ∈ Rates, the unique
state of MLTS(C ,τ) ∥ MLTS(D,τ) corresponding to these states is written ((sC , sD),
νC ∥D , tC ∥D), where νC ∥D(x) = νC (x) if x ∈ XC , and νC ∥D(x) = νD(x) if x ∈ XD . The
semantics of the parallel composition ((C ∥D),πC ∪ πD) over Pr ocC ∪ Pr ocD will
be given by means of a MLTS.

Definition 81 (Semantics of the Parallel Composition ). The MLTS generated by
the parallel composition of C and D is a MLTS(C ,τ) ∥MLTS(D,τ) = (Q,QF ,q0, ((ΣC ∪
ΣD )∪RPr oc

≥0 ),→mlts), where Q = {((sC ,sD ),νC ∥D , tC ∥D ) ∈ ((SC ×SD )×RX
≥0×R≥0) |νC ∥D |=

InvC (sC )∧ InvD(sD)} is the set of states. The set of final states QF consists of triples

{((s f
C

,s f
D

),νC ∥D , tC ∥D) ∈ ((SF
C
×SF

D
)×RX

≥0 ×R≥0) | νC ∥D |= InvC (s f
C

)∧ InvD(s f
D

)}. q0 =
((s0

C
, s0

D
),ν0

C ∥D ,0), where ν0
C ∥D is the valuation that assigns 0 to all the clocks. Σ is the

alphabet ΣC ∪ΣD and the transition relation →ml t s is defined by :

(i) A delay transition (q, d⃗ , q
′
) is denoted q

d⃗−→ q
′

where q = ((sC ,sD),νC ∥D , t
′
C ∥D),

q
′ = ((sC ,sD),νC ∥D +π d⃗ , t

′′
C ∥D), d⃗ = τ(t

′′
C ∥D)−τ(t

′
C ∥D) and ∀t ∈ [t

′
C ∥D , t

′′
C ∥D ] :

νC ∥D +π (τ(t)−τ(t
′
C ∥D)) |= InvC (sC ) ∧ InvD(sD).

(ii) A discrete transition (q,a, q
′
) is denoted q

a−→ q
′

where q = ((sC ,sD ),νC ∥D , tC ∥D ),

q
′ = ((s

′
C

,s
′
D

),ν
′
C ∥D , t

′
C ∥D ), a ∈ΣC ∪ΣD , there exists a transition sC

a,φC ,YC−−−−−−→ s
′
C

,

sD
a,φD ,YD−−−−−→ s

′
D

, such thatνC ∥D |=φC ∧φD , ν
′

=ν[(YC ∪YD ) → 0], ν
′
C ∥D |= IC (s

′
C

)

∧ ID(s
′
D

), t
′ = t

′′
.

Example 24. In Figure 7.5, two MTA A and B, and their composition A ∥ B are
presented. The automaton A , over the Pr oc = {p} and local clock xp can execute

the actions a, b, with the transitions s0
a,tr ue,xp :=0−−−−−−−−−→ta s1, s1

b,xp≥1,;−−−−−−→ta s0. The pos-
sible transitions of the automaton B over the Pr oc = {q} and local clock y q are

r0
b,tr ue,y q :=0−−−−−−−−−→ta r1, r1

c,y q≥1,;−−−−−−→ta r0. Both components execute in parallel and synchro-
nize through the action b. The locations of the composition (automaton) are given
as pairs (s0,r0), (s0,r1), (s1,r0), (s1,r1) whose elements corresponds to the locations of
the automaton A and B.

Given two MTA A = (A1,π) and B = (A2,π), where A1 and A2 are two TA. The
proof of the correctness of the MTA composition is based on proving the multi-
timed bisimulation between the semantics of the composition of the MTA A and
B. This means that we have to prove the parallel composition on the semantics for
MTA (e.g., MLTS(A ,τ) and MLTS(B,τ)).
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Figure 7.5: Parallel Composition of two MTA A and B

Theorem 58. Let A and B be two MTA, then for any τ ∈ Rates, MLTS(A ,τ) ∥
MLTS(B,τ) = MLTS((A ∥B),τ).

Proof. The proof consists in showing that each transition of the MLTS((A ,τ) ∥
(B,τ)) can be found in MLTS((A ∥ B),τ) and vice versa. Let R = { (((sA , sB),
νA ∥B , tA ∥B), ((sA ,νA , tA ), (sB ,νB , tB))) | νA ∥B(x) = νA (x) ⊎ νB(x) for x ∈ XA ⊎
XB and tA ∥B = tA = tB }. Based on the MLTS and MTA parallel composition, there
exists two types of transitions:

(i) Discrete transition: Let qA = (sA ,νA , tA ) and qB = (sB ,νB , tB) be two states
of MLTS(A ,τ) and MLTS(B,τ) respectively. A transition ((sA ,νA , tA ), (sB ,
νB , tB))

a−→ml t s ((s′
A

,ν′
A

, t ′
A

), (s′
B

,ν′
B

, t ′
B

)) exists on MLTS(A ,τ) ∥MLTS(B,τ)

iff the transition ((sA , sB), νA ∥B , tA ∥B)
a−→ml t s ((s′

A
, s′

B
), ν′

A ∥B , t ′
A ∥B)) exists

on MLTS((A ,τ) ∥ (B,τ)), with νA ∥B and ν′
A ∥B defined as νA ∥B(x) = νA (x)

⊎ νB(x) for x ∈ XA ⊎ XB , ν′
A ∥B = νA ∥B[(YA ⊎YB) ← 0]:

(a) For a ∈ ΣA ∩ ΣB : Let ((sA ,νA , tA ), (sB ,νB , tB))
a−→ml t s ((s′

A
,ν′

A
, t ′

A
),

(s′
B

, ν′
B

, t ′
B

)) be a transition of MLTS(A ,τ) ∥ MLTS(B,τ). By Defini-
tion 78 (a), we have that the transition ((sA ,νA , tA ), (sB ,νB , tB))

a−→ml t s

((s′
A

, ν′
A

, t ′
A

), (s′
B

,ν′
B

, t ′
B

)) can not exist iff unless (sA ,νA , tA )
a−→ml t s

(s′
A

,ν′
A

, t ′
A

) in MLTS(A ,τ) and (sB ,νB , tB)
a−→ml t s (s′

B
,ν′

B
, t ′

B
) in MLTS

(B, τ) both exist and the actions are synchronized. Therefore, since the
two transitions on the MLTS, then we also know that there are two transi-
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tions on the corresponding MTA, sA
a,φA ,YA−−−−−−→ta s′

A
and sB

a,φB ,YB−−−−−−→ta s′
B

.
Additionally, we have the clock valuations νA and ν′

A
(and νB and ν′

B

respectively) of each state defined respectively as ν′
A

= νA [YA ← 0] and
νA |= Inv(s′

A
) and similarly in order for νB and ν′

B
. Hence, the compo-

sition of sA
a,φA ,YA−−−−−−→ta s′

A
and sB

a,φB ,YB−−−−−−→ta s′
B

at the MTA level is also
based on the discrete transition of the MTA composition. This leads to
the transition (sA , sB)

a−→ta (s
′
A

, s
′
B

). The clock valuation νA (and νB)
of each MTA A (and B) is projected on the result of their composition.
By Definition 78, we have that the result of the composition of MLTS
there exists three kinds of transitions and the clock valuation νA (and
νB) is known for all kinds of transitions at the result of composition
of MTA, then we can generalize this fact to every transition →ml t s on
the corresponding MLTS. The clock ν′

A
(and ν′

B
) is projected into the

synchronization of the composition of the MTA. Then, the clock valua-
tion that were reset by νA and νB will be reset by νA ∥B . Based on the
composition of the MTA, we know that the discrete transition that are
enabled by (sA , s′

A
) (and (sB , s′

B
)) will be enabled by (sA , s′

A
), (sB , s′

B
).

This leads to ν′
A ∥B = νA ∥B[(YA ⊎YB) ← 0]. Therefore, given the tran-

sition (sA , sB)
a−→ta (s

′
A

, s
′
B

) and clock valuations νA ∥B and ν′
A ∥B then,

we can obtain ((sA , sB),νA ∥B , tA ∥B),
a−→mlts ((s

′
A

, s
′
B

),ν′
A ∥B , t ′

A ∥B).

Since the three cases hold, we conclude that ((qA ,νA , tA ), (qB ,νB , tB))
a−→mlts

((q
′
A

,ν
′
A

, t
′
A

), (q
′
B

,ν
′
B

, t
′
B

)) implies ((qA , qB),νA ∥B , tA ∥B)
a−→mlts ((q

′
A

, q
′
B

),

ν′
A ∥B , t ′

A ∥B) and ((qA , qB),νA ∥B , tA ∥B)
a−→mlts ((q

′
A

, q
′
B

),ν′
A ∥B , t ′

A ∥B) im-

plies ((qA , νA , tA ), (qB ,νB , tB))
a−→mlts ((q

′
A

,ν
′
A

, t
′
A

), (q
′
B

,ν
′
B

, t
′
B

)).
(ii) Delay transition: Let qA = (sA ,νA , tA ) and qB = (sB ,νB , tB) be two states of

MLTS(A ,τ) and, MLTS(B,τ) respectively. A transition ((sA ,νA , tA ), (sB ,νB ,

tB))
d⃗−→ml t s ((s′

A
,ν′

A
, t ′

A
), (s′

B
,ν′

B
, t ′

B
)) exists on MLTS(A ,τ) ∥ MLTS(B,τ) iff

the transition ((sA , sB), νA ∥B , tA ∥B)
d⃗−→ml t s ((s′

A
, s′

B
),ν′

A ∥B , t ′
A ∥B)) exists on

MLTS((A ,τ) ∥ (B,τ)), with νA ∥B and ν′
A ∥B defined as νA ∥B(x) = νA (x) ⊎

νB(x) for x ∈ XA ⊎ XB , ν′
A ∥B = νA ∥B[(YA ⊎YB) ← 0]:

(a) Let ((sA ,νA , tA ), (sB ,νB , tB))
d⃗−→ml t s ((s′

A
,ν′

A
, t ′

A
), (s′

B
, ν′

B
, t ′

B
)) be a

transition of MLTS(A ,τ) ∥ MLTS(B,τ). By Definition 78 (ii), we have

that the transition ((sA ,νA , tA ), (sB ,νB , tB))
d⃗−→ml t s ((s′

A
,ν′

A
, t ′

A
), (s′

B
,ν′

B
,

t ′
B

)) can not exist iff unless (sA ,νA , tA )
d⃗−→ml t s (s′

A
,ν′

A
, t ′

A
) in MLTS(A ,τ)

and (sB ,νB , tB)
d⃗−→ml t s (s′

B
,ν′

B
, t ′

B
) in MLTS(B,τ) both exist. There-

fore, since the two transitions on the MLTS, then we also know that

there are two transitions on the corresponding MTA qA
d⃗−→ta q

′
A

and

qB
d⃗−→ta q

′
B

where qA = (sA ,νA , tA ) and qB = (sB ,νB , tB). Additionally,
we have the clock valuations νA and ν′

A
(and νB and ν′

B
respectively)
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of each state defined respectively as d⃗ = τ(t
′
A

)−τ(tA ) and ∀t ∈ [tA , t
′
A

] :

ν+π (τ(t)−τ(tA )) |= Inv(sA ) and similarly in order for νB and ν
′
B

. Hence,

the composition of sA
d⃗−→icTA s

′
A

and sB
d⃗−→ta s

′
B

at the MTA level is also
based on the delay transition of the MTA composition. This leads to

the transition (sA , sB)
d⃗−→ta (s

′
A

, s
′
B

). The clock valuation νA ∥B of each
MTA is projected on the result of their composition. Then, the clock
valuation that were reset by νA and νB will be reset by νA ∥B . Based
on the composition of the MTA, we know that the delay transition that
are enabled by (sA , s

′
A

) and (sB , s
′
B

) will be enabled by (sA , sB), (s
′
A

, s
′
B

).

Therefore, given the transition (sA , sB)
d⃗−→ta (s

′
A

, s
′
B

) and clock valua-

tions νA ∥B and ν′
A ∥B then, we can obtain ((sA , sB),νA ∥B , tA ∥B),

d⃗−→mlts

((s
′
A

, s
′
B

),ν′
A ∥B , t ′

A ∥B).

(b) Let ((sA , sB), νA ∥B , tA ∥B)
d⃗−→ml t s ((s′

A
, s′

B
),ν′

A ∥B , t ′
A ∥B)) be a transition

of MLTS(A ∥ B,τ). By Definition 78 (ii), we have that the transition

(qA , qB)
d⃗−→mlts (q

′
A

, q
′
B

) and the clock valuation νA ∥B and ν′
A ∥B . There-

fore, since the two transitions on the composition of A and B, then by
the discrete transition of the composition of the two MTA, we know that

qA
d⃗−→ta q

′
A

and qB
d⃗−→ta q

′
B

both transition exist and qA = (sA ,νA , tA )
and qB = (sB ,νB , tB). Based on the composition of the clock valua-
tion ν′

A ∥B is defined respectively as d⃗ = τ(t
′
A ∥B)− τ(tA ∥B) and ∀t ∈

[tA ∥B , t
′
A ∥B] : νA ∥B +π (τ(t)−τ(tA ∥B)) |= InvA (sA ) ∧ InvB(sB) and sim-

ilarly in order for νB and ν
′
B

. Hence, the two transitions at the MTA level
along with the clock valuation of νA ∥B and ν′

A ∥B , is applied which leads

into (sA ,νA , tA )
d⃗−→ta (s

′
A

,ν
′
A

, t
′
A

) of MLTS((A ,τ) and (sB ,νB , tB)
d⃗−→ta

(s
′
B

,ν
′
B

, t
′
B

) of MLTS((B,τ). Now, the composition of these two transi-
tions at the MLTS level is also based on the of discrete transition the MTA
composition. This leads into the transition ((sA ,νA , tA ), (sB ,νB , tB))
d⃗−→mlts ((s

′
A

,ν
′
A

, t
′
A

), (s
′
B

,ν
′
B

, t
′
B

)) which happens to be our awaited con-
clusion.

Since the two implications hold, we conclude that ((qA ,νA , tA ), (qB ,νB , tB))
d⃗−→mlts ((q

′
A

,ν
′
A

, t
′
A

), (q
′
B

,ν
′
B

, t
′
B

)) implies ((qA , qB),νA ∥B , tA ∥B)
d⃗−→mlts ((q

′
A

,

q
′
B

), ν′
A ∥B , t ′

A ∥B) and ((qA , qB),νA ∥B , tA ∥B)
d⃗−→mlts ((q

′
A

, q
′
B

),ν′
A ∥B , t ′

A ∥B)

implies ((qA ,νA , tA ), (qB ,νB , tB))
d⃗−→mlts ((q

′
A

,ν
′
A

, t
′
A

), (q
′
B

,ν
′
B

, t
′
B

)).

Since the two implications hold, we conclude that ((qA ,νA , tA ), (qB ,νB , tB))
a−→mlts ((q

′
A

,ν
′
A

, t
′
A

), (q
′
B

,ν
′
B

, t
′
B

)) implies ((qA , qB),νA ∥B , tA ∥B)
a−→mlts ((q

′
A

,

q
′
B

), ν′
A ∥B , t ′

A ∥B) and ((qA , qB),νA ∥B , tA ∥B)
a−→mlts ((q

′
A

, q
′
B

),ν′
A ∥B , t ′

A ∥B)
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implies ((qA , νA , tA ), (qB ,νB , tB))
a−→mlts ((q

′
A

,ν
′
A

, t
′
A

), (q
′
B

,ν
′
B

, t
′
B

)).

Since (1), (2) and (3), we conclude that for any τ ∈ Rates, MLTS(A ,τ) ∥ MLTS(B,τ)
≈ MLTS(A ∥B,τ).

proposition 12. Let M1 and M2 be two MLTS over the actions Σ, then M1 ∥ M2 ≈
M2 ∥ M1.

Proof. The proof of this proposition consists in showing that each transition of M1

∥ M2 can be found in M2 ∥ M1 and vice versa, where R obey the symmetric prop-
erty, i.e., (qM1 , qM2 ) R (qM2 , qM1 ). Based on the MLTS composition, there exists
two types of transitions on the resulting system. Let R = {(qM1 , qM2 )|(qM2 , qM1 ) ∈
QM2∥M1 }. It directly follows from the definition of parallel composition in MLTS
(Definition 24) that:

(i) For any discrete transition (qM1 , qM2 )
a−→M1∥M2 (q ′

M1
, q ′

M2
) with a ∈Σ, there ex-

ists a corresponding transition (qM2 , qM1 )
a−→M2∥M1 (q ′

M2
, q ′

M1
) with ((qM1 , qM2 ),

(qM2 , qM1 )) ∈ R.

(ii) For any delay transition (qM1 , qM2 )
d−→M1∥M2 (q ′

M1
, q ′

M2
) with d ∈Rn

≥0, there ex-

ists a corresponding transition (qM2 , qM1 )
d−→M2∥M1 (q ′

M2
, q ′

M1
) with ((qM1 , qM2 ),

(qM2 , qM1 )) ∈ R.

Since every initial state (q0
M1

, q0
M2

) of M1 ∥ M2 has a match (q0
M2

, q0
M1

) in the initial

states of M2 ∥ M1, and ((q0
M1

, q0
M2

), (q0
M2

, q0
M1

) ∈ R. Therefore, R is a bisimulation
for M1 ∥ M2 ≈ M2 ∥ M1. Finally, by following a similar step, we could show that M2

∥ M1 ≈ M1 ∥ M2.

In the context of multi-timed bisimulation, compositionality [BCG88] is captured
by the following definition:

Definition 82 (Compositionality). A binary relation ≈ between two MLTS M1, M2

is compositional if M1 ≈ M2 and M3 ≈ M4 implies M1 ∥ M3 ≈ M2 ∥ M4.

proposition 13. Let M1, M2 and M3 be three MLTS over the set of actions Σ. For any
M1, M2 and M3, ≈ is compositional if and only if M1 ≈ M2 ⇒ M1 ∥ M3 ≈ M2 ∥ M3

(invariant under composition).

Proof. The proof of this proposition consists in showing for the sufficient direction
that M1 ≈ M2 ⇒ M1 ∥ M3 ≈ M2 ∥ M3. Assume that ≈ is compositional. Since ≈ is
reflexive M3 ≈ M3 holds. Using the definition of compositionality, M1 ≈ M2 and
M3 ≈ M3 imply M1 ∥ M3 ≈ M2 ∥ M3. For the necessary direction, assume that ≈
is invariant under composition. Then M1 ≈ M2 implies M1 ∥ M3 ≈ M2 ∥ M3. Also,
M3 ≈ M4 and commutativity of composition implies M2 ∥ M3 ≈ M2 ∥ M4, and by
transitivity M1 ∥ M3 ≈ M2 ∥ M4.
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7.4 Decidability of Multi-timed Bisimulation

A fundamental decision problem for TA arises from the comparison of two automata
that can be structurally equivalent (i.e., have the same locations and transitions). In
TA it was shown that timed trace inclusion is undecidable [AD94], whereas timed
bisimulation is decidable, making timed bisimilarity a particularly useful equiv-
alence notion for verifying RTS. Thus, methods based on symbolic abstractions
such as the region-based [AD94] and the zone-based abstraction [BY04] are used for
verifying timed bisimulation. However, the region-based method constructs a finite
region graph, but the problem with this graph is generally the potential explosion in
the number of regions (i.e., O (|X |! · c |X |) where X is a set of clocks and c are the max-
imal constants appearing in the clock constraints). Instead, zone-based methods
construct a zone graph, which is essentially a more efficient representation of the
state space for TA [BY04]. Zones can be represented and manipulated efficiently, but
abstractions of zones are required for checking timed bisimilarity [WL97] [GMS18].

As in TA, we present here a fundamental decidable problem used to reason
about behavioral equivalence between different components of a DRTS. Our strong
multi-timed bisimulation can be used to reason about the complete computational
steps of two MTA. Verification of strong multi-timed bisimulation is a challenging
problem, because the state space explosion caused by both interactions between
components and (independent) local clocks must be taken into account. Therefore,
we use the zone-based abstraction here, and inspired by [LLW95], we show that our
multi-timed bisimulation is decidable over an appropriate multi-timed zone graph.

7.4.1 Multi-Clock Zones

Here, we define a symbolic state (or zone) as a pair q = (s,Z ), where s is a location
of the MTA A and Z is a clock zone. A symbolic state q = (s,Z ) represents all the
states (s′,ν) ∈ q if s = s′ and ν ∈ Z , indicating that a state is contained in a zone.
Similarly, we can write (s,Z ) ⊆ (s′,Z ′) to indicate that s = s′ and Z ⊆ Z ′. To define
the notion of a clock zone [LLW95] over a set of clocks X, we will consider the set
Φ+(X ) of all the diagonal constraints over X . Formally, a clock zone is described by a
conjunction of diagonal constraints, i.e., constraints made up of a conjunction of
inequalities that compare either a clock value or the difference between two clock
values to an integer. However, preserving the difference between clocks makes sense
in the setting of TA, because as time passes, the clock differences remain the same
(i.e., the clock difference is an invariant with time), since all clocks evolve at the
same rate. But because our clocks evolve at rates that can be independent of each
other, we need to adapt certain operations on clock zones. This is described by rate
constraints.

Operations on Multi-Clock Zones Here we extend the semantics of some opera-
tions on clock zones to their multi-timed version (time successor and predecessor).
The operations intersection, limiting projection, clock reset, and inverse clock reset
retain the same semantics as in section 5.3.4.1. Mote that clock zones are always
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convex. To implement our decidable algorithms, we need to be able to compute
successors and predecessors of zones for delay and action transitions of MTA.

Definition 83 (Operations on Multi-clock zones). Let Z be a clock zones. The
semantics of the time successor and time predecessor on a clock zone can be defined:

(i) Time successor: Z ↑ = {ν+ d⃗ | ν ∈ Z , d⃗ ∈ RPr oc
≥0 ,∃t , t ′ > 0, t ≤ t ′, and ∃τ ∈

Rates, d⃗ = τ(t ′)−τ(t )},
(ii) Time predecessor: Z ↓ = {ν− d⃗ | ν ∈ Z , d⃗ ∈ RPr oc

≥0 ,∃t , t ′ > 0, t ≤ t ′, and ∃τ ∈
Rates, d⃗ = τ(t ′)−τ(t )}.

proposition 14. Let Z , Z ′ be two clock zones and Y ⊆ X . Then Z ∩Z ′, Z ⌋Y , Z ↓Y ,
Z ↑Y , Z ↑, and Z ↓ are also clock zones.

Proof. Let Z , Z ′ be zones and Y ⊆ X , then we need to prove the following opera-
tions are clock zones:

(i) Z ∩Z ′,
(ii) Z ⌋Y ,

(iii) Z ↓Y =Z ⌋X \Y ∩ (
∧

y∈Y y = 0),
(iv) Z ↑Y = (Z ∩ (

∧
y∈Y y = 0))⌋X \Y ,

(v) Z ↑,
(vi) Z ↓,

(i) Z ∩ Z ′ is a conjunction of clock constraints and, therefore, a clock zone.

(ii) Let Z be a clock zone and Y ⊆ X be a set of clocks. We are going to prove the
second case (ii) by showing that every clock valuation that satisfies Z ⌋Y also
satisfies Zφ where φ ∈ Φ(X )+. For a clock constraint φ ∈ Φ(X )+, let φ⌋Y be
the constraint, where all propositions containing clocks of the set X \Y are
removed. Furthermore, for a constraint φ ∈Φ(Y ), let φ⌋X be the constraint,
where all propositions containing clocks in X \Y . Thus, for the clock zone Z

= {ν | ν |= φ} of a constraint, φ ∈Φ(X )+ the clock zone projection operation
can be defined as Z ⌋Y = {ν | ν |=φ⌋Y } of a constraint φ ∈Φ(X )+. Thus, Zφ ⊆
Zφ⌋Y .

(iii) Let Z be a clock zone and Y ⊆ X be a set of clocks. We are going to prove the
third case (iii) by showing that every clock valuation that is in Z ↓Y is also in
Z ⌋Y ∩ (

∧
y∈Y ν(y) = 0) and vice versa (i.e., Z ↓Y ⊆ Z ⌋Y ∩ (

∧
y∈Y ν(y) = 0) and

Z ⌋Y ∩ (
∧

y∈Y ν(y) = 0) ⊆ Z ↓Y ).

(a) Z ↓Y ⊆ Z ⌋Y ∩ (
∧

y∈Y ν(y) = 0): Consider an arbitrary clock valuation ν.
Then, we assume ν ∈ Z ↓Y and show ν ∈ Z ⌋Y ∩ (

∧
y∈Y ν(y) = 0). Since ν

∈ Z ↓Y and clock valuation ν′, Z ↓Y denotes the valuation ν′ such that
for all y ∈ Y , ν(y) = 0 and for all x ∈ X \ Y , ν′(x) = ν(x) (by Definition 83
(3)). Hence, we can deduce from the above proposition and Definition 83
(2) that if ν ∈ Z ↓Y , then ν ∈ (

∧
y∈Y ν(y) = 0) and ν ∈ Z ⌋Y . Therefore, by

definition of intersection of zone, ν ∈ (
∧

y∈Y ν(y) = 0) ∩ Z ⌋Y . Thus, we
have Z ↓Y ⊆ (

∧
y∈Y ν(y) = 0) ∩ Z ⌋Y are also clock zone.
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(b) Z ⌋Y ∩ (
∧

y∈Y ν(y) = 0) ⊆ Z ↓Y : Consider an arbitrary clock valuation
ν. Then, we assume ν ∈ Z ⌋Y ∩ (

∧
y∈Y ν(y) = 0) and show ν ∈ Z ↓Y . By

intersection of zones, we know ν ∈ Z ⌋Y ∩ (
∧

y∈Y ν(y) = 0) implies both ν
∈ Z ⌋Y and ν ∈ (

∧
y∈Y ν(y) = 0). Therefore, for a subset of clocks Y ⊆ X

and clock valuation ν′, Z ⌋Y denotes the valuation ν′ such that for all x ∈
X \ Y , ν′(x) = ν(x) and (

∧
y∈Y ν(y) = 0) denotes the valuation ν such that

for all y ∈ Y ν(y) = 0. This is exactly the definition of clock reset, and so ν
∈Z ↓Y . Thus, we have Z ⌋Y ∩(

∧
y∈Y ν(y) = 0) ⊆Z ↓Y are also clock zone.

The proof of these zones establishes the desired equality Z ↓Y =Z ⌋Y ∩
(
∧

y∈Y ν(y) = 0).

(iv) Z ↑Y = (Z ∩ (
∧

y∈Y ν(y) = 0))⌋Y . The argument is symmetric to (i i i ).

(v) Let Z be a clock zone and X be a set of clocks. We are going to demonstrate
the fifth case (v) by showing that if Z is a clock zone, then a clock valuation
ν′ ∈ Z ↑, if there exists a tuple d⃗ ∈ RX

≥0, a tuple τ ∈ Rates, t , t ′ ≥ 0, t ≤ t ′ with
d⃗ = τ(t ′)−τ(t ), there exists a clock valuation ν ∈ Z such that ν+ d⃗ = ν′. Thus,
Z ↑ is a clock zone. In order to demonstrate this, we need to solve the following
system of inequalities:

−c0,i −ν(xi ) ∼ d⃗ f or al l xi ∈ X

d⃗ ∼ ci ,0 −ν(xi ) f or al l xi ∈ X

ν(xi + d⃗)−ν(x j + d⃗) ∼ ci , j f or al l xi , x j ∈ X

d⃗ ≥ 0

(a) Let xi be an independent clock, such that xi ∈ X . For all ν ∈ Z , we know
that if -c0,i - ν(xi ) ∼ d⃗ then -c0,i ∼ ν′(xi ) from which we can deduce that
the inequality does not force d⃗ ∈ RX

≥0 to be negative. Then the set of
solutions of the inequality is not empty (i.e., the inequality is pairwise
coherent). Let d⃗ ∈ RX

≥0 be such solution. We let ν be the valuation such
that ν(xi ) = ν′(xi )− d⃗ for all xi ∈ X . Such a valuation exists, and is in Z

by construction. Then, since ν′(xi ) = ν(xi )+ d⃗ with ν ∈ Z and some d⃗ ∈
RX
≥0 and t ∈ R≥0 we can deduce that ν′ ∈ Z ↑ and Z ↑ is a clock zone.

(b) Let xi be an independent clock such that xi ∈ X . For all ν ∈ Z , we know
that if d⃗ ∼ ci ,0 −ν(xi ) then ν′(xi ) ∼ ci ,0 from which we can deduce that
the inequality does not force d⃗ ∈ RX

≥0 to be negative. Then the set of
solutions of the inequality is not empty (i.e., the inequality is pairwise
coherent). Let d⃗ ∈ RX

≥0 be such solution. We let ν be the valuation such
that ν(xi ) = ν′(xi )− d⃗ for all xi ∈ X . Such a valuation exists, and is in Z

by construction. Then, since ν′(xi ) = ν(xi )+ d⃗ with ν ∈ Z and some d⃗ ∈
RX
≥0 and t ∈ R≥0 we can deduce that ν′ ∈ Z ↑ and Z ↑ is a clock zone.

(c) Let xi , x j be two independent clocks such that xi , x j ∈ X . For all ν
∈ Z , we know that (ν(xi ) + d⃗) - (ν(x j ) + d⃗) ∼ ci , j , but, due to the fact
that the clocks evolve at rates that can be independent of each other,
clock differences can change over time and the two occurrences of d⃗

141



do not cancel each other out, then we can deduce that the inequality
ν′(xi ) - ν′(x j ) ∼ ci , j is already in the appropriate form. Then the set of
solutions of the inequality is not empty (i.e., the inequality is pairwise
coherent). Let d⃗ ∈ RX

≥0 be such solution. We let ν be the valuation such
that ν(xi ) = ν′(xi )− d⃗ and ν(x j ) = ν′(x j )− d⃗ for all xi , x j ∈ X . Such
a valuation exists, and is in Z by construction. Then, since ν′(xi ) =
ν(xi )+ d⃗ and ν′(x j ) = ν(x j )+ d⃗ with ν ∈ Z and some d⃗ ∈ RX

≥0 and t ∈ R≥0

we can deduce that ν′ ∈ Z ↑ and Z ↑ is a clock zone.

(vi) Z ↓. The argument is symmetric to (v).

7.4.2 Multi-timed Zone Graphs

As in TA, MTA cannot be analyzed by finite state techniques, since the MLTS associ-
ated with it has infinitely many states. Therefore, it must be analyzed symbolically.
Here, we define the multi-timed zone graph using the independent local clocks,
and we extend the well-known zone graph for TA [AD94] [LLW95]. We work with
the multi-timed zone graph as a symbolic representation. The elements of a zone
graph are symbolic states (i.e., q = (s,Z )). We will use the notation Action(e) to
denote the action a of an edge e. The initial state q0 = (s0,ν0) in A corresponds to
a symbolic state (s0,Z0). The backward or forward exploration through the state
space of MTA requires operations on clock zones to return the discrete predecessors
or discrete successors of a symbolic state. More precisely, we extend the symbolic
discrete successor and predecessor operations on clock zones for a MTA A . These
operations on clock zones can be implemented efficiently on DBM [Dil90] [BY04].
We can now define the symbolic discrete successor and predecessor operations on
clock zones as follows:

Definition 84 (Discrete Successor). Let q = (s,Z ) be a zone and e=(s, a,φ,Y , s′) ∈
→t a be a transition of A , then post(Z ,e)={ν′ | ∃ν ∈ Z ,∃τ ∈ Rates, (s,ν)

e−→ml t s(A ,τ)

(s′,ν′)} is the set of valuations that q can reach by taking the transition e.

Intuitively, the zone (s′,post(Z ,e)) describes the discrete successor of the zone
(s,Z ) under the transition e.

Definition 85 (Discrete Predecessor). Let q = (s′,Z ′) be a zone and e=(s, a,φ,Y , s′) ∈
→t a be a transition of A , then pred(Z ′,e)={ν | ∃ν′ ∈Z ′,∃τ ∈ Rates, (s,ν)

e−→ml t s(A ,τ)

(s′,ν′)} is the set of valuations that q can reach by executing the transition e.

The zone (s,pred(Z ′,e)) describes the discrete predecessor of the zone (s′,Z ′)
under the transition e. The set pred(Z ′,e) can be computed using the operations
inverse clock reset and intersection on clock zones as follows:

pred(Z ′,e) = ((Z ′ ↑Y ∩ φ)∩ Inv(s)).

The set post(Z ,e) can be obtained using the operations clock reset and the
standard intersection of clock zones as follows:

post(Z ,e) = ((Z ∩ (φ∩ Inv(s)) ↓Y ∩ Inv(s′)).
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The sets post(Z ,e) and pred(Z ′,e) are thus also clock zones.

proposition 15. Let A be a MTA, e = (s, a,φ,Y , s′) ∈→mt a be a transition of a MTA
A and (s,Z ) be a zone, then post(Z ,e) = ((Z ∩ (φ∩ Inv(s))) ↓X ∩ Inv(s′)) and
pred(Z ′,e) = ((Z ′ ↑X ∩ φ)∩ Inv(s)).

Proof. Let (s,Z ) be a zone and e = (s, a,φ,Y , s′) ∈→mt a be a transition of an MTA
A , then we need to prove the following equalities:

(i) post(Z ,e) = ((Z ∩ (φ∩ Inv(s)) ↓X ∩ Inv(s′)),
(ii) pred(Z ′,e) = ((Z ′ ↑X ∩ φ)∩ Inv(s)).

(i) Let Z be a convex clock zone and X be a set of clocks. We are going to prove
the third case (i) by showing that every clock valuation that is in post(Z ,e) is
also in ((Z ∩ (φ∩ Inv(s)) ↓X ∩ Inv(s′)) and vice versa (i.e., post(Z ,e) ⊆ ((Z ∩
(φ∩ Inv(s)) ↓X ∩ Inv(s′)) and ((Z ∩ (φ∩ Inv(s)) ↓X ∩ Inv(s′)) ⊆ post(Z ,e).

(a) post(Z ,e) ⊆ ((Z ∩ (φ∩ Inv(s)) ↓X ∩ Inv(s′)): Consider an arbitrary
clock valuation ν. Then, we assume ν ∈ post(Z ,e) and show ((Z ∩ (φ∩
Inv(s)) ↓Y ∩ Inv(s′)). Since ν ∈ post(Z ,e), then, ν ∈ Z and exists t ∈
R≥0 and ν′ such that (s,ν, t)

e−→ml t s (s′,ν′, t) where e is a transition. By
Definition 75 (2)) there exists a discrete transition between s and s′ with ν
∈ φ and ν′ = ν[X ← 0] and ν′ ∈ Inv(s′). By Definition 83(3) it follows that
ν ∈ Z . Therefore, by intersection of zones and Definition 83(4), we have
that ν ∈ (Z ∩ (φ ∩ Inv(s)) ↓X and ν ∈ Inv(s′) then by clock equivalence
(ν ≡ ν′) (Definition 41) ν ∈ (Z ∩ (φ ∩ Inv(s)) ↓X ∩ ν ∈ Inv(s′). Thus, we
have post(Z ,e) ⊆ ((Z ∩ (φ∩ Inv(s)) ↓X ∩ Inv(s′)) are also zone.

(b) ((Z ∩(φ∩ Inv(s)) ↓Y ∩ Inv(s′)) ⊆ post(Z ,e): Consider an arbitrary clock
valuation ν. Then, we assume ν ∈ ((Z ∩ (φ∩ Inv(s)) ↓Y ∩ Inv(s′)) and
show ν ∈ post(Z ,e). Since ν ∈ ((Z ∩ (φ∩ Inv(s)) ↓Y ∩ Inv(s′)), then,
ν ∈ ((Z ∩ (φ∩ Inv(s)) ↓Y and ν ∈ Inv(s′). By Definition 83(3) and con-
junction of zones, we have that ν ∈ ((Z ∩ (φ∩ Inv(s)) and ν ∈ Inv(s′),
then ν ∈ (Z ∩ (φ∩ Inv(s))) ∩ Inv(s′) ⊆ post(Z ,e). This is exactly the
definition of inclusion of zones ν ∈ post(Z ,e). Thus, we have post(Z ,e)
⊆ ((Z ∩ (φ∩ Inv(s)) ↓X ∩ Inv(s′)) are also zone.

The proof of these zones establishes the desired equality post(Z ,e) =
((Z ∩ (φ∩ Inv(s)) ↓X ∩ Inv(s′)).

(ii) pred(Z ′,e) = ((Z ′ ↑Y ∩ φ)∩ Inv(s)). The argument is symmetric to (i i ).

A symbolic semantics of MTA called multi-timed zone graph is defined as fol-
lows:

Definition 86 (Multi-timed Zone Graph). Given a MTA A , its infinite multi-timed
zone graph (MZG(A )) is a transition system MZG(A ) = (Q, q0, (Σ∪ {ϵ}), →MZG),
where:

(i) Q consists of pairs q = (s,Z ) where s ∈ S, and Z ∈Φ+(X ) is a non-empty clock
zone with Z ⊆ Inv(s),
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b, yq> 5 

a, xp := 0 

a, xp < 2 

S2 S0 S1

Figure 7.6: A MTA A

(ii) q0 ∈ Q is the initial zone q0 = (s0,Z0) with Z0 = �∧x∈X x = 0�,
(iii) Σ is the set of labels of A ,
(iv) →MZG ⊆ Q× (→t a ∪ {ϵ})×Q is a set of transitions, where each transition in

MZG(A ) is a labelled by a transition e = (s, a,φ,Y , s′) ∈→ta, where s and s′ are
the source and target locations, φ is a clock constraint defining the guard of the
transition, a is the action of the edge and Y is the set of clocks to be reset by the
transition in the MTA A . For each e ∈ Σ, transitions are defined by the rules:

(a) For every e = (s, a,φ,Y , s′) in A and zone (s,Z ) already in Q, there exists a
discrete transition (q,e, q ′), where q = (s,Z )

e−→MZG q ′ = (s′,post(Z ,e)) if
post(Z ,e) ̸= ;.

(b) For a clock zone Z , there exists a delay transition (q,ϵ, q ′), where q =
(s,Z )

ϵ−→MZG q ′ = (s,Z ′) and Z ′ = Z ↑ ∩ Inv(s) where Z ′ is called a time
successor of zone Z .

Every zone has a ϵdelay transition to itself, and the ϵ transitions are also transitive.
Furthermore, (1) a ϵ delay transition must be strict to have clock zones and, (2) it is
not reflexive between zones. Since a ϵ transition is reflexive, time successor is also a
reflexive relation. For both e and ϵ transitions, if Z is a zone then Z ′ is also a zone.

Example 25. Consider the MTA A in Figure 7.6 with the finite input alphabet
Σ= {a,b}, the set of processes Pr oc= {p, q}, the set of local clocks X = {xp , y q }. Figure
7.7 shows MZG(A ).

7.4.3 Deciding Reachability in Multi-timed Zone Graphs

The multi-timed zone graph can be infinite because the constants used in the zones
can grow forever. However, a symbolic multi-timed zone graph can be made finite
using the extrapolation technique (see Section 5.3.7 E xtr a+

LU ). Multi-timed zone
graphs can be used as the basis for a reachability checking algorithm (see Section
5.3.4). The main idea of the algorithm is a depth-first search on the zone graph. The
algorithm 7.1 formalizes this process to compute the reachability zone graph for a
state q0. The algorithm constructs a finite symbolic zone graph (MZGE xtr a+

LU
(A )),

given a MTA (A ). However, since the multi-timed bisimilarity algorithm used here
uses two MTA (A and B), we must first construct a finite symbolic zone graph
(MZGE xtr a+

LU
(C )), given the parallel composition of two MTA (A and B) with the

same actions ΣA = ΣB , but disjoint clocks XA ∩ XB = ;).
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Figure 7.7: The zone graph for the automaton A in Figure 7.6

The Algorithm 7.1 is a classical algorithm (including subsumption) [BBLP06]
except that the delay successors are adapted. Algorithm 7.1 builds a symbolic zone
graph, starting with the pair q0 = (s0,E xtr a+

LU (Z0)) where s0 is the initial location of
the automaton A , Z0 ← �∧x∈X x = 0� represents the initial zone and E xtr a+

LU (LU -
bound) [Bou04a] [BBLP06] (line 9) is the extrapolation abstraction technique. For
each location s of a MZGE xtr a+

LU
(A ), there are bounded functions L,U (see Section

5.3.4) and we can construct the symbolic zone graph by adding symbolic states of the
form qMZG = (s,E xtr a+

LU (post(Z ,e))). Algorithm 7.1 presents a forward reachability
algorithm by using a waiting set of pairs D and a set of visited pairs Q such that D ⊆
Q and a set of transitions TZG in line 9. The algorithm consists of a loop that iterates
over D in line 10. Initially, the set contains only the element q0 = (s0,E xtr a+

LU (Z0))
in order to start the search at the starting location s0. At each iteration, the algorithm
takes a pair Z1 from D and removes it from D in line 11. The algorithm enters an
inner loop (lines 13-24) and for each discrete transition e = (s, a,φ,Y , s′) with Z ∧φ ̸=
; (i.e., applicable) the algorithm computes the successors of s and associates each
successor with the zones (s′,E xtr a+

LU (post(Z ,e))) = Z2 (lines 14-15). This result is a
set of new pairs (s,Z ) ∈ S ×Φ+(X ). The transitions e with successors are stored in
the set of labels TZG in line 15. In line 16, it is checked if there exists an already visited
pair (s′,Z3) ∈ Q such that Z2) ⊆ Z3. If true, the discrete transition between (s,Z1)
e−→ZG (s′,Z3) is stored in the set of transitions TZG (line 17). Otherwise, the discrete
transition between (s,Z1)

e−→ZG (s′,Z2) is stored in the set of transitions TZG and
the successor pair (s′,Z2) is stored in Q and D (lines 20-22). During the search, the
algorithm also computes the delay transition by the conjunction between the time
successors of the current construction zone Z1 (s,E xtr a+

LU (Z1) ↑), the invariant
constraint and rate constraint of the current location s (i.e., E xtr a+

LU (Z1 ↑ ∧Inv(s)))
in line 25. In line 26, it is checked if there exists an already visited pair (s,Z3) ∈ Q
such that Z2 ⊆ Z3. If true, the delay transition between (s,Z1)

e−→ZG (s,Z3) is stored
in the set of transitions TZG (line 28). Otherwise, the delay transition between (s,Z1)
e−→ZG (s,Z2) is stored in the set of transitions TZG and the successor pair (s,Z2) is
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1 Input: A MTA C =(S,s0,Σ,X,→ta,Inv,F)
2 Output: A reachable zone graph MZG(C ) = (Q, q0, (Σ∪ {ϵ}),TZG)
3 //s ∈ S is a location of C , Z1≤i≤3 are DBM
4 //TZG is a set of transitions (i.e. →ZG= TZG)
5 //D and Q are sets of pairs in S×Φ+(X )
6 //D is the set of open states
7 MZG BuildSymbZoneGraph(MTA C ){
8 q0 = (s0,E xtr a+

LU (Z0)) s.t for all x ∈ X and ν ∈ Z0, ν(x) = 0;
9 Q, D = {q0}, TZG = ;;

10 while{D != ;}{
11 Choose and Remove (s,Z1) from D;
12 for(transition e = (s, a,φ,Y , s′) s.t Z1 ∧φ ̸= ;){
13 //Z2 is the successor
14 Z2 = E xtr a+

LU (post(Z1,e));
15 EZG = EZG ∪ {e};
16 if(∃(s′,Z3) ∈Q s.t Z2 ⊆Z3){

17 TZG = TZG∪ {(s,Z1)
e−→ZG (s′,Z3)};

18 }
19 else{

20 TZG = TZG∪ {(s,Z1)
e−→ZG (s′,Z2)};

21 Q = Q∪ {(s′,Z2)};
22 D = D∪ {(s′,Z2)};
23 }
24 }
25 Z2 = E xtr a+

LU ((Z1 ↑ ∧Inv(s)));
26 if(∃(s,Z3) ∈Q s.t Z2 ⊆Z3){

27 TZG = TZG∪ {(s,Z1)
ϵ−→ZG (s,Z3)};

28 }
29 else{

30 TZG = TZG∪ {(s,Z1)
ϵ−→ZG (s′,Z2)};

31 Q = Q∪ {(s,Z2)};
32 D = D∪ {(s,Z2)};
33 }
34 }
35 return MZG(Q, q0, (Σ∪ {ϵ}),TZG);
36 }

Algorithm 7.1: Reachable Multi-timed Zone Graph with Subsumption.

stored in Q and D (lines 30-32). Finally, in line 36, the algorithm returns a reachable
zone graph.

Example 26. Consider the two MTA A and B in Figure 7.8 with the finite input
alphabet Σ= {a,b,c}, the set of processes Pr oc = {p, q}, the set of clocks XA = {xp , y q },
XB = {w p , zq }.
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a, y = 4, y := 0  qq

A B
Figure 7.8: Two MTA A and B

proposition 16 (Completeness). Let θ = (s0,ν0, t0)
d⃗0,a0−−−→ (s1,ν1, t1)

d⃗1,a1−−−→ (s2,ν2, t2) . . .
d⃗n−1,an−1−−−−−−−→ (sn ,νn , tn) be an initial (but not necessarily accepting) run of MLTS(A ,τ),
for some τ ∈ Rates. Then, for any state (si ,νi , ti ), where 0 ≤ i ≤ n, appearing in this
run, there exists a symbolic zone (si ,Zi ) added in Q such that νi ∈ Zi .

Proof. We proceed by induction on the length of the run leading to (si ,νi , ti ).
Base case: We know that ν0 ∈ Z0. The zone (s0,E xtr a+

LU(s0)
(Z0)) is added to D and

Q in line 9.
Induction case: Assume that for all 0 ≤ i ≤ m, there exists (si ,Zi ) in Q such that νi

∈ Zi . We will now show that there exists (sm+1,Zm+1) in Q such that νm+1 ∈ Zm+1.
By the induction hypothesis, we have (sm ,Zm) in Q such that νm ∈ Zm . Consider

the transition (sm ,νm , tm)
d⃗m ,am−−−−→ (sm+1,νm+1, tm+1) of the run θ and let em be its

transition. As (sm ,Zm) is in Q, the delay transition
ϵ−→ZG has been considered in

the line 25 and represents dm > 0. The other case d⃗m = 0 means that ν′ = ν and

is thus already included in Zm . Let ν
′
m = νm + d⃗m . Then, since (sm ,νm , tm)

dm−−→
(sm ,ν

′
m , t

′
m) is a delay transition of the MLTS(A ,τ), we have the time successor

(i.e., Zm = Z2 ← E xtr a+
LU ((Z1 ↑)∧ Inv(s))) and thus at line 27 we have added Z

′
m

= Z3 or Z
′
m = Z2 at line 30, but in any case ν

′
m ∈ Z2 ⊆ E xtr a+

LU (Z2) ⊆ Z3. Let

(sm ,Z
′
m)

em−−→ZG (sm+1,Zm+1) be the discrete transition in the zone graph in lines 14

and 17. Let (sm ,Z
′
m)

em−−→ZG (sm+1,Zm+1) be the transition in the zone graph in lines
26 and 27. By definition of the symbolic transition, νm+1 ∈ Zm+1. If (sm+1,Zm+1) is
in Q, we are done. The only other case when (sm+1,Zm+1) is not in Q is when there
exists (sm+1,Z

′
m+1) in Q such that Zm+1 ⊆Z

′
m+1. Therefore, νm+1 ∈Zm+1 and since

(sm+1,Z
′
m+1) is in Q, our required zone would be (sm+1,Z

′
m+1).

The proposition above tells us that Algorithm 7.1 over-approximates reachability.
Now we can determine the termination of Algorithm 7.1 because there are finitely
many E xtr a+

LU zones [BBLP06]. Here we will use Algorithm 7.1 to over-approximate
the co-reachable state space of the two MTA A and B, on the strongly synchronized
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product of A and B (i.e, C = A ∥B), as a precursor to our multi-timed bisimulation
algorithm (see Section 7.4.4).
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Figure 7.9: The multi-timed zone graph based on the composition of C = A ∥ B.

Example 27. Consider the zone graph in Figure 7.9 which was build from the parallel
composition of the two MTA A and B in Figure 7.8.

7.4.4 Refinement Algorithm

In algorithm 7.2 we describe a refinement algorithm (see Section 5.3.10) to compute
the multi-timed bisimulation from its zone graph MZG(C ), where C = A ∥ B. The
state space Q of MZG(C ) is initially divided into zones that over-approximate the
co-reachable states of A and B. In essence, our algorithm 7.2 is based on the refine-
ment technique [PT87] [TY01] [BO02], but with some variations due to independent
clocks where delay transitions (unlike in the case of Figure 5.12, see section 5.3.10)
can continuously traverse diagonal, nearly vertical, and horizontal time successor
zones. Conversely, when the clocks are perfectly synchronous, the delay transition
traverses only continuously diagonal time successor zones. Thus, the time refine-
ment operator presented in [TY01] has been adapted to our algorithm 7.2. Figure
7.10 shows an example of delay transitions traversing continuously diagonal, nearly
horizontal, and vertical time successor regions for two independent local clocks
X = {xp , y p }. We define a multi-time refinement operator that perfectly matches the
characteristics of our delay transitions. The discrete refinement operator presented
in [TY01] is also not applicable within our algorithm 7.2, because it can be applied
over models with synchronized clocks (i.e., clocks evolving at the same rate) and
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single time steps. Therefore, our algorithm 7.2 assigns states to equivalence zones
according to their common actions. In each refinement iteration, the set of zones
is refined according to their actions. The algorithm in [PT87], cannot be applied
directly in our setting due to its untimed nature, while in our case delay and discrete
transitions should be considered. Based on [TY01], we introduce a discrete and
multi-time refinement operator that refines the set of zones until a fixed point is
reached, which is the multi-timed bisimilarity. Thus, we introduce the multi-time
and discrete refinement operators.

x 

y 

1 

1 

2 

2 

3 

0 p 

q 

Figure 7.10: Multiple time successors

Definition 87 (Multi-Time Refinement Operator). Let q = (s,Z ) and q ′ = (s,Z ′) be
two zones of the same location, then :

TimePred↑(Z ,Z ′) = {ν ∈Z | ∃ d⃗ ∈RPr oc
>0 , ∃ τ ∈ Rates, ∃ t , t ′′ ≥ 0, t ≤ t ′′,

d⃗ = τ(t ′′)−τ(t ), (ν+π d⃗) ∈ Z ′, and ∀t ′, t ≤ t ′ ≤ t ′′,

∃d⃗ ′, d⃗ ′ = τ(t ′)−τ(t ) then (ν+π d⃗ ′) ∈ (Z ∪Z ′)}

Then, TimePred↑(Z , Z ′) is the set of valuations in the zone Z from which a valua-
tion of Z ′ can be reached through the elapsing of time, while staying in (Z ∪Z ′) with-
out entering any other zones besides Z and Z ′ (i.e., Z ∪Z ′). The TimePred↑(Z ,Z ′)
operator refines Z by selecting the states that can reach Z ′.

proposition 17. Let q = (s,Z ), q ′ = (s,Z ′) ∈Q be two zones, then TimePred↑ (Z ,Z ′)
is a clock zone.

Our proof follows the same lines as the proof of [TY01] (p.48).

Proof. Let q = (s,Z ), q ′ = (s,Z ′) and Z ′′ = TimePred↑(Z ,Z ′). We show that Z ′′

is convex, i.e, if ν1, ν2 ∈ Z ′′ then ν = kν1 + (1− k)ν2 ∈ Z ′′, for 0 < k < 1. ν1, ν2

∈ Z ′′ implies that ν1, ν2 ∈ Z and ∃ d⃗1, d⃗2 ∈ RPr oc
>0 such that ν1 +π d⃗1, ν2 +π d⃗2 ∈

Z ′ and ∃ t1, t2 ≥ 0, t1 ≤ t2, ∀ t ′, t1 ≤ t ′ ≤ t2, d⃗1 = τ(t2)−τ(t ′) and d⃗2 = τ(t ′)−τ(t1)
then ν1 +π d⃗1 ∈ Z ′, ν2 +π d⃗2 ∈ (Z ∪Z ′). Let d⃗ = kd⃗1 + (1− k)d⃗2, then ν+π d⃗ =
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k(ν1 +π d⃗1)+ (1− k)(ν2 +π d⃗2), implying that ν+π d⃗ ∈ Z ′, since Z ′ is zone. Now,
we have to show that ∀ t ′, t1 ≤ t ′ ≤ t2, d⃗ = τ(t2)−τ(t ′) and d⃗ ′ = τ(t ′)−τ(t1), ν+π d⃗ ′

∈ (Z ∪Z ′). Given d⃗ ′, d⃗ , we can write d⃗ ′ as kd⃗3 + (1− k)d⃗4, for some d⃗3, d⃗1 and
d⃗4, d⃗2. We have ν1 +π d⃗3, ν2 +π d⃗4 ∈ (Z ∪Z ′). If both ν1 +π d⃗3, ν2 +π d⃗4 ∈ Z or
ν1 +π d⃗3, ν2 +π d⃗4 ∈ Z ′, we are done, since Z and Z ′ are both zones. Considerer the
case ν1 +π d⃗3 ∈ Z and ν2 +π d⃗4 ∈ Z ′. Let g be the smallest positive real such that
ν2+π d⃗4−g ∈Z or ν1+π d⃗3−g (1− 1

k ) ∈Z ′. To assume the first case, we have ν1+π d⃗5,

ν2 +π d⃗6 ∈ Z , for d⃗6 = d⃗4 − g and d⃗5 = d⃗3 − g (1− 1
k ). Moreover, d⃗ ′ = kd⃗5 + (1−k)d⃗6,

which means that ν+π d⃗ ′ = k(ν1 +π d⃗5) + (1−k)(ν2 +π d⃗6). By convexity of Z , ν+π d⃗ ′

∈ Z .

For the discrete refinement operator, we use as the stamp of a state (s,ν) (i.e.,
states in MLTS (A ,τ), where A is a MTA) the set of outgoing discrete transitions
from (s′,ν′) with the same actions. Then, a refinement of a zone can be computed by
grouping states that have the same actions. The resulting set of zones then represents
the multi-timed bisimulation relation: two states (s,ν) and (s′,ν′) are multi-timed
bisimilar iff they are in the same zone with similar outgoing transitions (i.e., the
same actions). Formally, this is captured in the following definition:

Definition 88 (Action Refinement Operator). Let q = (s,Z ) be a zone, then the stamp
of a state (s,ν)∈ q formed by the set of labels of all the edges starting from (s,ν)∈ S×RX

≥0

is defined as: ActionSigPredq (s,ν) = {a | ∃ ν′ ∈ Z ,∃ s′ ∈ S, (s,ν)
a−→ml t s (s′,ν′)}. Also,

the stamp of the zone q is defined as:

ActionSig(q) = ⋃
(s,ν)∈q

ActionSigPredq (s,ν)

The ActionSigPredq (s,ν) operator is used to compute the stamps of a state
in a zone. Our algorithm 2 consists of two steps: The initial phase, is respon-
sible for keeping pairs of states into zones so that every pair of states ((sA , sB),
(νA ,νB)) from the same zone q have the same action ActionSigPredq (sA ,νA ) =
ActionSigPredq (sB ,νB). The refinement phase consists of computing the timed
predecessors (see Definition 89 below) and the discrete action predecessors (see
Definition 90 below) until a stable set of zones is reached. Stable zones are a multi-
timed bisimulation relation only if each pair of states of each zone in the set has the
same action with respect to each computed refinement. A detailed explanation of
our algorithm 2 follows:

7.4.4.1 Initial phase

LetΠ0 = Q be the initial set of zones, where Q is given by algorithm 1. After the instruc-
tion (Π← Π0) in line 6, the set Π contains zones consisting of states with unique
actions: Π is composed of zones ((sA , sB),Z ), where ActionSigPredq (sA ,νA ) =
ActionSigPredq (sB ,νB) for any (νA ∪νB) ∈Z . Let us recall that for simplicity, we
will write (s,Z ) to denote the pairs ((sA , sB),Z ).
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7.4.4.2 Refinement phase

The set of zones is iteratively refined until all zones becomes stable with respect to
all their timed predecessors and discrete predecessors.

Definition 89 (Time Refinement). Let Π be a set of zones and q = (s,Z ), q ′ = (s′,Z ′)
be two zones in Π with s = s′. Then for the delay transitions, the refinement function
is defined as follows:

TimeRefines(Z ,Π) = {TimePred↑(Z ,Z ′) | Z ′ ∈Π, q
ϵ−→ZG q ′}.

Definition 90 (Discrete Refinement). Let Π be a set of zones and q = (s,Z ), q ′

= (s′,Z ′) be two zones in Π. Let q = (s,Z ) be the currently examined zone and
ActionSig(q) be the actions of the set of states into the zone q. Let eA and eB be tran-
sitions of the MTA A and B. Then the refinement of a zone q is defined as follows:

DiscreteSigRefine(Z ,Π) =
⋂

a∈ActionSig(q) ((
⋂

{eA |Action(eA )=a}
⋃

{eB |Action(eB )=a}

pred(Z ′, (eA ,eB))) ∩ (
⋂

{eB | Action(eB )=a}
⋃

{eA | Action(eA )=a} pred(Z ′, (eA ,eB)))).

proposition 18. Let (s,Z ) be a zone of Π and let (eA , eB) be an edge of the MZG(C ),
then each of TimeRefine(Z ,Π) and DiscreteSigRefine(Z ,Π) forms a stable set of Z

in Π.

Our proof follows the same lines as the proof of [TY01].

Proof. (i) Consider Π1 = TimeRefine(Z ,Π). By Lemma 17, all members of Π
are zones. It remains to show that their union yields Z . Let Zi ∈ Π1, Zi =
TimePred↑(Z ,Z ′

i ), where Z ′
i ∈ Π, for i = 1,2. Since Π is a stable set of zones,

Z , Z ′
1 and Z ′

2 are all disjoint. Assumes ν ∈ Z1 ∩Z2. For i = 1,2, ∃ d⃗i ∈ RPr oc
>0

such that ν+ d⃗i ∈ Z ′
i and ∀ν ∈ Z , ∃d⃗i ∈ RPr oc

>0 , ∃ τ ∈ Rates, ∃ t , t ′′ ≥ 0 and

t ≤ t ′′, ∀t ′, t ≤ t ′ ≤ t ′′, (ν+ d⃗i ) ∈ Z ′
i , d⃗i = τ(t ′′)−τ(t ) and ∀ d⃗ ′

i , 0 ≤ d⃗ ′
i ≤ d⃗i then

(ν+d⃗ ′
i ) ∈ (Z ∪Z ′

i ), d⃗ ′
i = τ(t ′)−τ(t ). Observe that d⃗1 ̸= d⃗2, since Z ′

1 and Z ′
2 are

disjoint. Without loss of generality, assume d⃗1 < d⃗2. We have that ν+ d⃗1 ∈ Z ′
1

and ν+ d⃗1 ∈ Z ∪Z ′
2, that is, either ν+ d⃗1 ∈ Z ′

1 ∩Z or ν+ d⃗1 ∈ Z ′
1 ∩Z ′

2, which
contradicts the fact that Z , Z ′

1 and Z ′
2 are all disjoint. This proves that Z1 and

Z2 are disjoint. Now, let ν ∈ Z . We can find RPr oc
>0 and Z ′ ∈Π such that ν+ d⃗

∈ Z ′ and ∀ν ∈ Z , ∃d⃗ ∈ RPr oc
>0 , ∃ τ ∈ Rates, ∃ t , t ′′ ≥ 0 and t ≤ t ′′, ∀t ′, t ≤ t ′ ≤

t ′′, (ν+ d⃗) ∈ Z ′, d⃗ = τ(t ′′)−τ(t) and ∀ d⃗ ′, 0 ≤ d⃗ ′ ≤ d⃗ then (ν+ d⃗ ′) ∈ (Z ∪ Z ′),
d⃗ ′ = τ(t ′)−τ(t ). By definition, ν ∈ TimePred↑(Z ,Z ′).

(ii) Now, consider Π2 = DiscreteSigRefine(Z ,Π). For all members of Π2 are zones.
By the distributivity of pred over union (pred(Z1 ∪ Z2, e) = pred(Z1,e) ∪
pred(Z2,e)) is a zone of Z . It remains to show that they are disjoint. Let
Zi ∈ Π2, Zi = Z ∩pred(Z ′

i ,e), where Z ′
i ∈ Π, for i = 1,2. Since Π is a a stable

set of zones, Z ′
1 and Z ′

2 are disjoint. Assume ν ∈ Z1 ∩ Z2. Recall that the
successor of ν, say ν′, is unique. Since ν ∈ pred(Z ′

1,e) ∩ pred(Z ′
2,e), it must be

that ν′ ∈ Z ′
1 ∩ Z ′

2, which contradicts Z ′
1 ∩ Z ′

2 = ;.
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1 Input: A MZG(C )= (Q,q0 = (q0
A

,q0
B

),Σ=ΣA =ΣB ,→ZG), Π0 =Q
2 Output: A stable set of zones Π

3 //Π is a set of zones, Z are clock zones
4

5 ZG PartitionZoneGraph(ZG C, Π0){
6 //Get the input set of zones Π

7 Π′ = Π0;
8 do{
9 // Refine Π′ by delay transitions

10 for(each zone Z ∈ Π′){
11 Π′ = TimeRefine(Z, Π′);
12 }
13 // Refine Π′ by discrete transitions
14 for(each zone Z ∈ Π′) {
15 Π′ ← DiscreteSigRefine(Z, Π′);
16 }
17 }while(Π′ does not change)
18 return Π′;
19 }

Algorithm 7.2: The Refinement Algorithm for a Reachable MZG.

In short, algorithm 7.2 starts with an initial set of zones Π0 and successively
refines this set such that each zone eventually contains only bisimilar state pairs. The
definition TimeRefine(Z ,Π) above generates a finer set of zones that deals with delay
transitions. The definition of DiscreteSigRefine(Z ,Π) above also generates a finer
set of zones and distinguishes the states by their discrete transitions. Termination is
ensured by the fact that at worst the refinement can yield the region automaton.

algorithm 7.2 describes the main steps of the decision procedure for multi-timed
bisimulation checking. It uses the function BuildSymbZoneGraph (i.e., algorithm
7.1). The function PartitionZoneGraph returns a stable set of zones Π. Given a set of
zones Π, algorithm 7.2 computes the states ((sA , sB),Z ) from Π that are bisimilars
in particular whether the initial state ((s0

A
, s0

B
),Z0) are bisimilar.

proposition 19. Let Π be an initial set of zones and q = (s,Z ) be a zone in Π. Let
Π′ be a final stable set of zones. Let (sA ,νA ) and (sB ,νB) be two states in q, then
(sA ,νA ) ≈ (sB ,νB) iff ((sA , sB),νA ∪νB) ∈ q ′, where q ′ is a zone of the final set of
stable zones Π′.

Now we show that the problem of deciding whether two MTA are multi-timed
bisimilar is EXPTIME-complete. Our algorithm 7.2 uses a reachable multi-timed
zone graph ZG(C ) to decide multi-timed bisimilarity. Our approach is based on
a simple reduction of Linearly Bounded Alternating Turing Machines (LB-ATM)
[AL99]. Our reduction can be applied to both TA and MTA. Timed bisimulation has
been shown to be decidable for TA in EXPTIME. [AL99] [HHK95] [WL97] [LS00]. We

152



reduce the acceptance problem for LB-ATM to the problem of deciding whether
two MTA are multi-timed bisimilar.

Theorem 59. Deciding multi-timed bisimulation between two MTA is EXPTIME-
complete.

Proof. EXPTIME-hardness: The proof follows from the EXPTIME-hardness of timed
bisimilarity on TA [AL99] [LS00], as MTA are an extension of TA: If we use a single
process, MTA = TA.

Proof. EXPTIME-membership: EXPTIME-membership can be deduced from the
EXPTIME-membership of the same problem for TA [AL99] [WL97]. The EXPTIME-
membership can be obtained by applying decision algorithms over the reachable
multi-timed zone graph corresponding to the parallel composition of two MTA. Let
C be a parallel composition of two MTA A and B. Let q be a state of C , deciding
whether two states (sA ,νA ) and (sB ,νB) in q are multi-timed bisimilar can be done
by using the decision algorithm in [WL97]. Thus the number of zones in the multi-
timed zone graph is exponential in the number of clocks of the MTA A . Hence,
decide multi-timed bisimilarity is done in EXPTIME.

Example 28. An example of a stable set of zones computed by our algorithms can be
found in Figure 7.11. Figure 7.11 shows the multi-timed bisimilar graph from Figure
7.9.
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Figure 7.11: Multi-timed bisimulation result from A and B in Figure 7.8

153



7.5 A Multi-Timed Modal Logic

Extensions of timed modals and temporal logics, such as Timed Propositional Modal
Logic (TPML), µ-calculus [HNSY94], Lν [LLW95], and Timed Computation Tree
Logic (TCTL [TY01]) have been used to specify sequential (mono-timed) systems
whose behavior is governed by timing constraints. However, in these logics, the
information about independent clocks and distributed components observed in
a DRTS is modeled in a global setting [Ray15]. Consequently, these logics may
not be suitable for explicitly specifying local timing properties that need to hold
only in selected parts of the overall system. In essence, this means that the mono-
timed semantics of these logics is defined in terms of Timed Labelled Transition
Systems (TLTS). However, there are logics that have been defined to capture aspects
of distributed components and timing properties of DRTS: e.g., DRTL [MP90],
APTL [WME93] and DECTL [OLS11], among others. Roughly speaking, these logics
allow the definition of formulas whose truth values depend on (or are relative to) only
part of their underlying mathematical models. In the case of DRTL and APTL, these
logics are an extension of Second Order Logic (SOL) and First Order Logic (FOL),
where the set of formulas consists of constants, functions, predicates, universal
and existential quantifiers, and logical connectives. In general, these logics are
undecidable, but depending on which fragment is used, the resulting logic may be
decidable. In the case of DECTL, a distributed real-time logic with independent time
evolutions is proposed. This logic can be model-checked by translating a DECTL
formula into a distributed event clock automaton [OLS11]. In general, this timed
temporal logic does not use different action labels and delays, i.e. it is interpreted
over TLTS. Unlike timed temporal logics, timed modal logics distinguish transitions
of a TLTS with different actions and delays. On the other hand, timed modal logics
can be used to study behavioral equivalence by using bisimulation [Mil89]. Timed
bisimulation [Cer93] was used to verify the preservation of mono-timed behavior
and the timed properties expressed in TCTL and Lν. Timed bisimulation was shown
to be decidable for Timed Automata (TA) [AD94] [LLW95]. Based on MLTS, which
is an extension of TLTS to deal with the notion of distributed clocks, we propose
MLν, an extension of Lν that relies on a distributed semantics for Timed Automata
(TA). Instead of considering uniform clocks over the distributed systems, we let time
vary independently in each TA. We define the syntax and semantics of MLν over
executions of MLTS with such a semantics, and we show that its model checking
problem against MLν is EXPTIME-complete.

7.5.1 Syntax of MLν

We define MLν, a multi-timed modal logic that extends the logic Lν over distributed
clocks. We first present the syntax of the logic MLν.

Definition 91. Let Σ be a finite alphabet, X be a finite set of clocks, Pr oc be a set of
processes, π : X → Pr oc be a function that maps each clock to a process and Id the
set of proposition identifiers. The formulae of MLν over Σ, X and Id are defined by the
grammar:
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ϕ ::= tr ue | f al se | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | [a]ϕ |〈a〉ϕ |

∃ϕ | ∀ϕ | xp i n ϕ | φ | xp + c ∼ y p + d | Z

where a ∈ Σ, p ∈ Proc, xp , y p ∈ X, c, d ∈ {0, · · · ,k}, k a non-negative integer, ∼ ∈
{=,>,≥,<,≤}, Z ∈ Id, φ ∈Φ(X) a clock constraint, [a]ϕ, 〈a〉ϕ are two modalities of the
logic, and ∃ϕ and ∀ϕ are the two timed modalities. Note that we can only compare
two clocks of the same process.

The identifiers Id are specified by a declaration environment D assigning a MLν
formula to every identifier in order to define properties with maximal fixpoints. A

declaration is noted by Z
def= ϕ for D(Z) =ϕ.

7.5.2 Semantics of MLν

Let A be a MTA over Proc and τ∈Rates and assume that MLTS(A , τ) = (Q,q0,Σ,→ml t s )
gives its semantics. Now, we interpret Lν formulas over extended states. An extended
state over Q is a pair (q,µ), where q ∈ Q is a MLTS state (Definition 5) and µ a val-
uation for the formula clocks in X. An extended state satisfies an identifier Z if it
belongs to the maximal fixpoint of the equation Z = D(Z). The formal semantics of
MLν formulas interpreted over MLTS(A , τ) is given by the satisfaction relation |=,
defined as the largest relation that satisfies the equivalences in 91.

The intuition for the different operators is as follows. The formula xp i n ϕ

introduces a formula clock xp for p ∈ Proc and initializes it to 0; i.e. an extended
state satisfies the formula if and only if the modified state, with xp reset to 0, satisfies
ϕ. The semantics of the diamond modality 〈a〉ϕ is, informally, that in a given state it
is possible to perform an a action and go to a state whereϕ holds, and double for the
box modality [a]ϕ, all transitions labeled by a go to such a state. Informally, ∃ϕ (resp.
∀ϕ) holds in an extended state if there exists (resp. if every) delay transition leading
to a state satisfying ϕ. ∃ (resp. ∀) denotes existential (resp. universal) quantification
over (arbitrary) delay transitions. Dual ∀ϕ holds in a state if every delay transition
leads to a state satisfyingϕ. ∀ denotes universal quantification over delay transitions.

Definition 92. Let Σ be a finite alphabet, X be a finite set of clocks and Pr oc be a set
of processes. The semantics of formulae in MLν is implicitly given with respect to a
given MLTS inductively as follows:

(q,µ) |= tr ue ⇔ tr ue
(q,µ) |= f al se ⇔ f al se
(q,µ) |= ϕ1 ∧ϕ2 ⇔ (q,µ) |=ϕ1 and (q,µ) |=ϕ2

(q,µ) |= ϕ1 ∨ϕ2 ⇔ (q,µ) |=ϕ1 or (q,µ) |=ϕ2

(q,µ) |= φ ⇔µ |=φ for φ ∈Φ(X )

(q,µ) |= [a]ϕ ⇔∀q
a−−→ml t s q ′, (q ′,µ) |=ϕ

(q,µ) |= 〈a〉ϕ ⇔∃q
a−−→ml t s q ′, (q ′,µ) |=ϕ

(q,µ) |= xp i n ϕ ⇔ (q,µ[xp → 0]) |=ϕ
(q,µ) |= ∃ϕ ⇔∃d⃗ ∈RPr oc

≥0 ,∃q ′ ∈ Q, such that q
d⃗−−→ml t s q ′,

(q,µ+π d⃗) |=ϕ
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(q,µ) |= ∀ϕ ⇔∀d⃗ ∈RPr oc
≥0 ,∀q ′ ∈ Q,such that q

d⃗−−→ml t s q ′,
(q,µ+π d⃗) |=ϕ

(q,µ) |= xp + c ∼ y p + d ⇔µ(xp ) + c ∼µ(y p ) + d
(q,µ) |= Z the maximal fixpoint in D(Z)

Two formulae are equivalent iff they are satisfied by the same set of extended
states in every MLTS.

Definition 93. A state q in a MLTS satisfies a formula ϕ, iff (q,µ0) |= ϕ where µ0 is
the clock valuation that maps each formula clock to zero.

Definition 94. Let A be a MTA andϕ ∈MLν, then A |=ϕ iff ∀τ ∈Rates, MLTS(A ,τ)
|= ϕ.

Let ϕ be a closed formula, then the set of extended states satisfying ϕ is indepen-
dent of the valuation µ for the formula clocks. Thus, if ϕ is closed then for any state
q in a MLTS and valuations µ, µ′ for the formula clocks, we can get that (q,µ) |= ϕ

iff (q,µ′) |= ϕ. Therefore, if ϕ is closed, it makes sense to talk about a state q that
satisfies ϕ.

Theorem 60. Let Pr oc be a set of processes. Let M = (Q, q0,Σ,→ml t s ) be a MLTS
and q1, q2 be multi-timed bisimilar states in Q. Let µ be a clock valuation for the
formula clocks in X , then the extended states (q1,µ) and (q2,µ) satisfy exactly the
same formulae in MLν.

Proof. Assume that q1, q2 are multi-timed bisimilar states in Q. Let µ be a clock
valuation for the formula clocks in X . Assume that (q1,µ) |= ϕ for some formula ϕ ∈
MLν. Using structural induction on ϕ, we shall prove that (q2,µ) |= ϕ. By symmetry,
this is enough to establish that (q1,µ) and (q2,µ) satisfy the same formulae in MLν.

The proof proceeds by a case analysis on the form of ϕ. Here, we present the
details only for four modalities ∀ ϕ1, the other modalities can be proved in the
same way. Our inductive hypothesis is that, for all states r1 and r2, if r1 and r2 are
multi-timed bisimilar and (r1,µ′) |= ϕ1 for some valuation µ′ of the formula clocks,
then (r2,µ′) |= ϕ1. Using this hypothesis, we shall prove that :s (q2,µ) |= ∀ ϕ1 : To this end, assume that, for every d⃗ ∈ RPr oc

≥0 , for all q ′
2 ∈ Q, q2

d⃗−−→ml t s q ′
2. We wish to show that (q ′

2,µ+π d⃗) |= ϕ1. Now, since q1 and q2 are

multi-timed bisimilar and q2
d⃗−−→ml t s q ′

2, there is a state q ′
1 ∈ Q, q1

d⃗−−→ml t s q ′
1

and q ′
1 is multi-timed bisimilar to q ′

2. By our supposition that (q1,µ) |= ϕ, we
have that (q ′

1,µ+π d⃗) |= ϕ1. The inductive hypothesis yields that (q ′
2,µ+π d⃗) |=

ϕ1. Since q ′
2 and d⃗ were arbitrary we may conclude that (q2,µ) |= ∀ ϕ1, which

was to be shown.s (q2,µ) |= ∃ϕ1 : To this end, assume that, there is some d⃗ ∈ RPr oc
≥0 , there is some

q ′
2 ∈ Q, q2

d⃗−−→ml t s q ′
2. We wish to show that (q ′

2,µ+π d⃗) |= ϕ1. Now, since q1

and q2 are multi-timed bisimilar and q2
d⃗−−→ml t s q ′

2, there is a state q ′
1 ∈ Q,

q1
d⃗−−→ml t s q ′

1 and q ′
1 is multi-timed bisimilar to q ′

2. By our supposition that
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(q1,µ) |= ϕ, we have that (q ′
1,µπ+ d⃗) |= ϕ1. The inductive hypothesis yields

that (q ′
2,µπ+ d⃗) |= ϕ1. Since q ′

2 and d⃗ were arbitrary we may conclude that
(q2,µ) |= ∃ ϕ, which was to be shown.s (q2,µ) |= y p i n ϕ1. To this end, assume that, for some y p ∈ X, for p ∈ Pr oc,
such that (q2,µ[y p → 0]) |= ϕ1. Now, since q1 and q2 are multi-timed bisimilar
and by our supposition that (q1,µ) |= y p i n ϕ for some y p ∈ X for p ∈ Pr oc,
we have that (q1,µ[y p → 0]) |= ϕ reset y p to 0.s (q2,µ) |= y p + c ∼ xp + d . To this end, assume that, for some y p , xp ∈ X
for p ∈ Pr oc, for some c, d ∈ N such that µ(y p ) + c ∼ µ(xp ) + d . Now, since
q1 and q2 are multi-timed bisimilar and by our supposition that (q1,µ) |=
y p + c ∼ xp + d for some y p , xp ∈ X for p ∈ Pr oc , for some c , d ∈N, we have
that µ(y p ) + c ∼ µ(xp ) + d .

As an immediate consequence of the above theorem and by instantiating the
above result to the initial state of the MLTS, we obtain the following result.

proposition 20. Given two MLTS M1 and M2, if M1 ≈ M2 and M1 |= ϕ then M2 |=
ϕ.

Since MTA provide a formalism for the finite description of MLTS and the clock
constraints are exactly the same as those present in the syntax of the logic MLν, then
we obtain the following result.

Theorem 61. Let A1 and A2 be two MTA and ∀ ϕ formula in the logic MLν. If (A1 |=
ϕ iff A2 |= ϕ) then A1 ≈ A2.

Proof. (sketch). A proof of this theorem may be obtained from the characteristic
property of TA [LLW95].

proposition 21. Given two MTA A1 and A2, if A1 ≈ A2 and A1 |= ϕ then A2 |= ϕ.

7.5.3 Examples of Properties

Here, we use MLν formulas to express multi-timed properties.

Example 29. Consider the MTA Aq described in Figure 7.4 right. The initial state
(q0,µ0) (i.e., q0 = (T0,ν0)) satisfies the following MLν formula ϕ:

ϕ = y q i n ∃( 3 ≥ y q ≥ 1 ∧ 〈a〉 tr ue)

Intuitively, this formula means that the action a can be performed by the process q
after a delay between 1 and 3, for instance 2 time units.

Example 30. Consider the MTA M described in Figure 7.3. The initial state (q0,µ0)
(i.e., q0 = (S0,ν0)) satisfies the following MLν formula ϕ:

ϕ = y q i n ∃( 2 ≥ y q ≥ 0 ∧ 〈a〉 S1) ∧ (xp ≥ 1 ∧ 〈a〉 S1)
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Intuitively, this formula means that the action a can be performed by the process q
after a delay between 0 and 2, for instance 1 and the action a can be performed by the
process p after a delay 1 time units.

Example 31. Consider the MTA A described in Figure 7.12. The state (q1,µ1) (i.e., q1

= (S1,ν1)) satisfies the following MLν formula ϕ:

ZS1 = xp i n ∃(xp ≤ 10 ∧ 〈b〉 ZS1 )∧ [b] (xp ≤ 10 ∧ xp i n ZS1 )∧∀ ZS1 ∨
y q i n ∃(y q ≤ 9 ∧ 〈b〉 S0) ∧ xp i n (〈b〉 S0)

Intuitively, this formula means that the action b can be performed by the process p
before a delay 10 time units (self-loop) or the action b can be performed by the process
q before a delay 9 time units.

Example 32. The initial state (q0,µ0) satisfies the following MLν formula ϕ:

ϕ = xp i n ∃(xp ≥ 1 ∧ 〈a〉 tr ue ∨ 〈b〉 tr ue)

Intuitively, this formula means that the action a or b can be performed by the process
p before a delay 1 time units.

Example 33. Consider the two MTA Ap (left) and Aq (right) in Figure 7.4 with the
alphabet Σ= {a}, the set of processes Pr oc = {p, q}, the set of clocks X = {xp , y q } and
without invariants (i.e, all the invariants are true). We could combine two MTA to
a single new one, where their interactions are determined by synchronous discrete
transitions and asynchronous delay transitions (all clocks of the composition evolve
independently with time). For readability, we have renamed the actions in Σ to ap

and aq . Thus, we could also combine two formulas into a single new one, where the
initial state (q0,µ0) is the conjunction of the two initial states of Ap and Aq . We could
describe the multi-timed bisimulation with a single formula in MLν. The initial state
(q0,µ0) satisfies the following MLν formula ϕ:

ϕ = ( [ap ]〈aq 〉 (xp i n ∃(3 ≥ xp ≥ 1 ∧ 〈ap〉 tr ue))) ∧
( [aq ]〈ap〉 (y q i n ∃(3 ≥ y q ≥ 1 ∧ 〈aq 〉 tr ue))).

Intuitively, this formula means that the action ap and aq can be performed by the
process p and q after a delay between 1 and 3, for instance 2 time units.

7.5.4 Model Checking

Here, we consider the model checking problem of MLν sentences on MTA models.
This problem consists, given a MLν sentence ϕ and an MTA A , in deciding whether
the relation A |= ϕ holds.

Theorem 62. The model checking problem of MLν on MTA is EXPTIME-complete.
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Figure 7.12: A Multi-timed Automata A

Proof. EXPTIME-hardness: The proof follows from the EXPTIME-hardness of the
model-checking of the logic Lν over TA [AL99], as MTA are an extension of TA and
MLν is the corresponding extension of Lν: If we use a single process, MLν = Lν and
MTA = TA.

Proof. EXPTIME-membership: To prove EXPTIME-membership, we use the idea
suggested in [LLW95]. Let A be a MTA, ϕ ∈ MLν, K the number of clocks of the
automaton A , C the maximal constant of A and ϕ, n the nesting depth of greatest
fixpoint quantifier in ϕ. We consider the region graph Reg i ons(A ,ϕ) [AD94] asso-
ciated with A and the formula ϕ with clocks X . The region graph depends on the
maximal constants with which clocks are compared in A and ϕ. Using the region
graph Reg i ons(A ,ϕ), model checking MLν formulas can be done in the time that is
exponential in the number of K , C and n. This can be shown as in [LLW95]. Follow-
ing [Alu92], A |= ϕ iff A ′ |= ϕ, where A ′ = unti med(A ) is the untimed automaton
associated with A and ϕ (the region graph Reg i ons(A ,ϕ)). The size of A ′ is expo-
nential in the length of the timing constraints of the given MTA automaton and in
the length of the formulaϕ (assuming binary encoding of the constants), that is, |A ′|
= O((|S|+ |→t a |) · K ! · 2K · C K ). The region graph A ′ can be constructed in linear
time, which is also bounded by O((|S|+|→t a |) · K ! · 2K · C K ) [Alu92]. On the region
graph, untimed model checking can be performed in time O((|ϕ| · |A ′|). Clearly we
obtain an algorithm of time complexity O(|ϕ| · (|S|+ |→t a |) · K ! · 2K · C K )|ϕ|.

7.5.5 Satisfiability Checking

The satisfiability checking problem, which is the dual of the model checking problem,
is to check whether a given ϕ formula is satisfied by a multi-timed automaton A .
Formally, let ϕ be a MLν formula and A be a MTA, then the satisfiability problem
(A |= ϕ) is decidable. Currently, the satisfiability problem for Lν has been shown
undecidable (in fact, even for its non-recursive fragment) [JLMX14]. The satisfiability
problem for the Recursive Weighted Logic (RWL) has been shown decidable by
applying a variant of the region technique developed for TA [LM14a]. We could
explore the possibility of using the technique presented in [LM14a] to exploit a
recent decidability result [JLMX14] [LM14a].
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7.6 Application of MTA and MLv

In this section, we present the experimental results related to our alternative seman-
tics. We introduce the task graph and the characteristics of cancer problems, and we
show how these problems can be modeled as a MTA. We also describe the properties
of these problems in MLν.

7.6.1 Task Graph Scheduling

Task Graph Scheduling (TGS) is a crucial problem in distributing tasks among the
processors of a (distributed) system. Since TGS is a NP-complete problem, different
search methods are used to find the near-optimal schedule. In TGS, tasks are sched-
uled on a finite number of (homogeneous) machines or processors, while respecting
some precedence constraints. Homogeneity means that all machines or processors
have the same computational capabilities and that all network connections have the
same physical characteristics. A task graph is a set of partially ordered tasks, with an
integer number (i.e., task execution time) associated with each task. A task can be
executed only if all its predecessors in this graph have completed [AKM03].

Nevertheless, for the majority of existing TGS algorithms, the task execution
time is deterministic and precisely defined in advance. In fact, in the real world,
assuming task execution times before execution is unrealistic, since it is not possi-
ble to obtain an accurate prediction of such execution times. However, it is more
realistic to assume that task execution times may be uncertain due to the hetero-
geneous machines in distributed systems. Here we are interested in TGS, where
tasks are scheduled on a finite number of (heterogeneous) machines or processors
(heterogeneous distributed systems). Heterogeneity means that all machines or pro-
cessors have different computational capabilities and all network connections have
different physical characteristics. Common examples of heterogeneous systems are
commodity clusters. Commodity clusters are typically upgraded with additional
machines. However, these machines can be equipped with new technologies and
faster computing speeds than the old machines, resulting in a heterogeneous cluster.
Some tasks can be performed faster on some machines than on others. In this case,
we consider an extension of the TGS described in [BFLM11] and [AKM03]. We show
how MTA can be used to introduce independent clocks (clock drifts), uncertain task
execution times (random values), processes, and failures.

Figure 7.13(a) shows the three processors and the execution times for six tasks.
Figure 7.13(b) shows the task graph for the six tasks and the dependencies between
tasks. 7.13(c) shows the CPU speed for the two processors.

7.6.2 Modeling the Task Graph Scheduling in MTA

In [AKM03] and [BFLM11], TA were used for modeling the TGS problem. These
TA are composed of one automaton for each processor, one scheduler controller
(automaton), and a parallel composition between them. The scheduler controller
(automaton) determines when tasks are performed and on which processors. Some
constraints must be respected by the graph tasks and verified by the scheduler
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Figure 7.13: Task Graph Problem with 6 tasks

controller, such as a task cannot be scheduled until all of its predecessors have been
computed. A task can be executed by any processor, but a processor cannot execute
more than one task at a time. Here, we extend the TGS problem with independent
clocks. Tasks may be modeled as MTA. For each task, we construct a MTA able to
handle within the appropriate amount of time the requests from the tasks. Here, we
model the tasks with processors, but without the scheduler controller automaton.
For the t ask1 of Figure 7.13, this is as follows:
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Figure 7.14: MTA model for the Task1 in figure 7.13

Figure 7.14 below shows a MTA A for the t ask1 of Figure 7.13 with the fi-
nite alphabet Σ ={ p1_t ask1_i , p2_t ask1_i , p3_t ask1_i , p1_t ask1_e, p2_t ask1_e,
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p3_t ask1_e, p1_t ask1_d , p2_t ask1_d , p3_t ask1_d , p1_t ask1_s, p2_t ask1_s, p3_
t ask1_s, p1_t ask1_ f , p2_t ask1_ f , p3_t ask1_ f }, the set of processes (processors)
Pr oc = {p1, p2, p3}, the set of independent clocks X = {xp1, y p2, zp3}. The actions
p1_t ask1_i , p2_t ask1_i and p3_t ask1_i correspond to the start of the task (task1)
either by P1, P2, or P3. Then, when a process (processor) is chosen (faster clock) and
task1 is completed, there is a choice between moving to a location corresponding to
successful completion with actions p1_t ask1_d , p2_t ask1_d or p3_t ask1_d and
one to defect with actions p1_t ask1_e, p2_t ask1_e, or p3_t ask1_e. In both cases,
we move to a location where no time can pass and immediately notify the scheduler
of either the success with actions p1_t ask1_s, p2_t ask1_s, or p3_t ask1_s or fail-
ure of the computation with actions p1_t ask1_ f , p2_t ask1_ f , p3_t ask1_ f . The
scheduler controller automaton must also change for this model since it must react
to the failure signals from the processors. The independent clocks xp1, y p2, and zp3

are used to record the time that a task has been running and they are reset when a
new task is started. The automata for the other 5 tasks are similar except that the
action name changes and the invariants are modified to reflect the values in Figure
7.14(a).

7.6.3 Properties of the Task Graph Scheduling in MLν

Example 34. Consider the MTA A described in Figure 7.14. The initial state (q0,µ0)
(i.e., q0 = (S0,ν0)) satisfies the following MLν formula (property) ϕ:

ϕ = xp1 i n ∃(〈p1_t ask1_i 〉 S1) ∨ y p2 i n ∃(〈p2_t ask1_i 〉 S4) ∨
zp3 i n ∃(〈p3_t ask1_i 〉 S7)

Intuitively, this formula means that the action p1_t ask1_i can be performed by
the process p1 instantly (or not) and thereby to reach the S1 location, or the action
p2_t ask1_i can be performed by the process p2 instantly (or not) and thereby to reach
the S4 location, or p3_t ask1_i can be performed by the process p3 instantly (or not)
and thereby to reach the S7 location.

Example 35. Consider the MTA A described in Figure 7.14. The state (q1,µ1) (i.e., q1

= (S1,ν1)) satisfies the following MLν formula (property) ϕ:

ϕ = xp1 i n ∃(xp1 ≤ t_{1,1} ∧ 〈p1_t ask1_e〉 S2) ∨ xp1 i n ∃(〈p1_t ask1_d〉 S3)

Intuitively, this formula means that the action p1_t ask1_e can be performed by the
process p1 before a delay t_{1,1} time units and thereby to reach the S2 location, or the
action p1_t ask1_d can be performed by the process p1 instantly (or not) and thereby
to reach the S3 location.
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7.6.4 Hallmarks of Cancer

Tumors go through certain stages and acquire certain (intermediate) phenotypic
progression states (also called hallmarks), culminating in the final state of tissue
invasion and metastasis. The hallmarks of cancer (or phenotypic progression states)
approach is an interesting tool that summarizes the vast complexity of cancer phe-
notypes and genotypes into a set of discrete states. The hallmarks of cancer include
six biological progression states that are acquired during the multistep development
of human tumors [HW11, HW16]. The six hallmarks currently include (see Figure
7.15) Sustaining Proliferative Signaling (SPS), Evading Growth Suppressors (EGS),
Resisting Cell Death (RCD, Enabling Replicative Immortality (ERI), Introducing
Angiogenesis Signal (IAS), and Activating Invasion and Metastasis (AIM).

Figure 7.15: The Hallmarks of Cancer from [HW11, HW16]

. sSustaining Proliferative Signaling (SPS): Normally, the body’s cells need hor-
mones and other molecules that act as alarms to tell them to grow and divide.
However, cancer cells can grow without these external signals.sEvading Growth Suppressors (EGS): Normally, cells have internal processes
that control cell development and division. These processes are controlled by
proteins called suppressor genes. However, cancer cells are generally resistant
to growth-inhibiting signals from their neighbors.sResisting Cell Death (RCD): Cells can destroy themselves (also known as
apoptosis). However, cancer cells lose this ability.sEnabling Replicative Immortality(ERI): Normally, cells cannot divide indefi-
nitely. Cells have a limited number of divisions before they become unable to
divide or die. Cancer cells can divide indefinitely without senescence.
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s Inducing Angiogenesis Signal (IAS): Angiogenesis is the process by which new
blood vessels are formed. Cancer cells can initiate this process, which ensures
that these cells have a continuous supply of oxygen and other nutrients.sActivating Invasion and Metastasis (AIM): Cancer cells can invade surrounding
tissue and spread (metastasize) to distant parts of the body.

Typically, cancer cells arise from mutations in a specific set of genes. Therefore,
specific drugs are administered individually or combined in a cocktail to interfere
with the functions of these genes and slow the development of cancer cells (e.g.,
an Avastin drug inhibits the associated signaling pathway, thus preventing growing
tumors from receiving the necessary supply of oxygen and blood) [PAM+22]. The
drugs that can be used in each step are listed in the Figure 7.16.

Chlorpromazine, DS00329, 
Trifluoperazine, A4, Pimozide,

Thioridazine,   Clozapine, Flphenazine

Chlorpromazine, Thioridazine,
Trifluoperazine, DSS00329

Chlorpromazine, Prochloroperazine, 
Promazzine

Pimozide, Paliperidone, 
Risperidone 

Chlorpromazine, Thioridazine,
Haloperidol, Risperidone

Chlorpromazine, Fluspirilene,
Pimozide

Figure 7.16: The Hallmarks of Cancer represented with (cocktail) drugs from
[PAM+22]

Furthermore, progressions through these hallmarks are associated with certain
minimum amounts of time (i.e., depending on the patient, cancer progression in
hallmarks may take days, months, or years) and drugs. Only after a certain amount of
time is progression possible (i.e. moving from one state to another in the hallmarks)
and a drug can be administered (drugs can stop or slow down cancer progression).
It is also well known in the field of oncology that certain drugs can speed up or slow
down the growth of the hallmarks of cancer.

7.6.5 Modeling the hallmarks of cancer in MTA

Here, we construct a MTA able to model the possible progression of the hallmarks
of cancer (see Figure 7.17). However, this model is a simplified and generalized
representation of the hallmarks of cancer.
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Figure 7.17: A MTA for the hallmarks of cancer from [OWM12]

Figure 7.17 below shows a MTA A for the hallmarks of cancer of Figure 7.16
with the finite alphabet Σ (cocktail of drugs) ={ ϵ, d1, d2, d3, d4, d5, d6 }, the set
of processes (processors) Pr oc (patients) = {p, q}, the set of independent clocks X
= {xp , y q }. In our model, drugs can be modifying the clock rates (i.e., drugs can
be speeding up the clock rates). The initial location (Normal) with the action ϵ

(drug not supplied) corresponds to the start of cancer either by the patient P or q
(in some patients, cancer may progress speeding up, due to different family and
socio-environmental factors). Then, when a process (patient) is chosen (a faster
progression of cancer), there is a choice between moving to a location SPS or EGS.
In both cases, we move to a location labeled with invariant (i.e., the maximum time
that the system can remain in the respective location) and action d1 or d2 (drugs).
Invariants in SPS (xp ≤ 4) and EGS ((y q ≤ 7) locations of the MTA A can force the
hallmarks of cancer back to the initial location (Normal) before the transition to EGS
(or SPS) becomes possible. The independent clocks xp and y q are used to record
the time that a drug has been supplied and they are reset when a new hallmark of
cancer is stated. The other locations in A are similar except that the action names
(drugs) change (transitions) and the invariants are modified to reflect the maximum
time that the hallmark of cancer can remain in the respective location.
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7.6.6 Properties of the hallmarks of cancer in MLν

Example 36. Consider the MTA A described in Figure 7.17. The initial state (q0,µ0)
(i.e., q0 = (Nor mal ,ν0)) satisfies the following MLν formula (property) ϕ:

ϕ = xp i n ∃(〈ϵ〉 SPS) ∨ y q i n ∃(〈ϵ〉 EGS)

Intuitively, this formula means that the action ϵ can be performed by the process
p instantaly (or not) and thereby to reach the SPS location, or the action ϵ can be
performed by the process q instantaly (or not) and thereby to reach the EGS location.

Example 37. Consider the MTA A described in Figure 7.17. The state (q1,µ1) (i.e., q1

= (SPS,ν1)) satisfies the following MLν formula ϕ:

ZSPS = (xp ≤ 4) ∧ ∀(〈d1〉 ZSPS )∧ ([d1] ZSPS )∧∀ ZSPS ) ∨
xp i n ∃(xp > 4 ∧ (〈ϵ〉 Nor mal )) ∨ ∃( xp i n (〈ϵ〉 EGS))

Intuitively, this formula means that the action b can be performed by the process p
before a delay 10 time units (self-loop) or the action b can be performed by the process
q before a delay 9 time units.

7.7 Strengths and Weaknesses of the Formalisms

This section aims at showing the strengths and weaknesses of the two formalisms
presented in this chapter.

7.7.1 Strengths

The main strengths are the incorporation of an alternative semantics over sequential
semantics for TLTS and icTA, an extension of the classical theory of timed bisimula-
tion with the notion of multi-timed bisimulation, and the corresponding decision
algorithms: (i) a forward reachability algorithm for the parallel composition of two
MTA, which will help us to minimize the state space exploration by our second
algorithm, and (ii) decision algorithms for multi-timed bisimulation using the zone-
based technique. The multi-timed bisimulation algorithm is EXPTIME-complete.
Another strength is the definition of a formalism for specifying the timing properties
of DRTS; this formalism extends Lν by incorporating a multi-timed semantics based
on MLTS with distributed clocks (MLν). The model checking for the extended MLν
formula interpreted over MTA is EXPTIME-complete. The extended MLν logic is
sound and complete. The adoption of pointwise semantics by MTA and MLν, pro-
vides a convenient framework for both design and implementation of reachability
algorithms, multi-timed bisimulation algorithms, efficient representation and ma-
nipulation of multi-timed zones, and multi-timed zone graphs. Existing tools such
as UPPAAL, and KRONOS are based on pointwise semantics.
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7.7.2 Weaknesses

Since MTA are an extension of TA, then it inherits all its weaknesses of TA (TA
are neither determinizable nor complementable and their inclusion problem is
undecidable).

7.8 Wrap up

This chapter introduces Multi-timed Automata (MTA), which are an extension of
icTA and DTA, but with an alternative semantics based on the concepts of inde-
pendent clocks, multi-timed words, and Multi-timed Labeled Transition Systems
(MLTS). In the second section, thanks to our alternative semantics, we were also
able to extend the definition of timed bisimulation to multi-timed bisimulation. In
the third section, we have shown the parallel composition between MTA. In the
fourth section, we have shown an EXPTIME algorithm for deciding whether two
MTA are multi-timed bisimilar. In the fifth section, we extended the timed modal
Lν logic with independent clocks. This gives us the Multi-timed modal Logic MLν,
which we have shown to be PSPACE-complete. In the sixth section, we have shown
some examples of distributed real-time models built over MTA and MLν. Finally,
in the seventh section, we have shown the strengths and weaknesses of MTA and
MLν.
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Independent clocks operate autonomously without any direct relationship or
dependency on each other. They operate independently and maintain their own rate
behavior without synchronization. The lack of a relationship between independent
clocks means that changes or events in one clock do not directly affect or influence
the behavior of other independent clocks. However, it is important to note that
in certain scenarios, there may be indirect interactions or dependencies between
independent clocks, for example, in larger systems where different components or
subsystems are involved. Therefore, in this chapter, we define the formalisms of
(Derivative) Multi-Timed Automata (DMTA) and (Derivative) Multi-Timed Modal
Logic (DMLν) in the context of TT for modeling and verifying DRTS. DTMA and
DMLν are novel variants of TA and Lν inspired by Distributed Timed Automata
(DTA) and TA with Independent Clocks (icTA) [Kri99, ABG+08, OLS11] which allow
rate constraints on clock derivatives. Rate constraints are attached to the locations
of the automaton and the clocks derivatives corresponding to the first derivative of
the original ones. The clocks can advance at different rates, and the rates can be real
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values. Rate constraints can be expressed as a conjunction of comparisons of two
clock derivatives or a clock derivative value with a natural constant of 1. If no rate
constraints are specified at the locations, it is assumed that ẋ = 1 (i.e., like a TA).

Hence, we can establish a relationship between independent clocks using their
clock derivatives. By using the derivatives of clocks, we can gain insights into the
behavior and characteristics of the clocks themselves. The derivatives of clocks can
provide valuable information about the rate or acceleration at which the clock values
are changing. The magnitude of the derivative represents the rate of change, with
a higher magnitude indicating a faster rate. By using the derivatives of clocks, we
can compare the temporal relationships between two independent clocks or an
independent clocks with 1.

In general, the reachability (and bisimulation) problem for Hybrid Automata
(HA) (Regular Hybrid Automata (RHA), Stopwatch Automata(SWA), Multi-rate
Timed Automata (MRTA)) is undecidable [HKPV98]. Only for a small subset of
(HA) such as Initialized Rectangular Hybrid Automata (IRHA), Initialized Stopwatch
Automata (ISWA), Initialized Singular Automata (ISHA), is the reachability problem
known to be decidable [HKPV98]. It is known [HKPV98] that even a small generaliza-
tion of MRTA or RHA can make the reachability problem undecidable.

The problem of undecidability present in SWA (i.e., a subclass of HA) arises from
the possibility of stopping and resetting time (i.e., the rate at a location can be either
ẋ = 0 or ẋ = 1). A SWA is like a TA with stopwatch variables instead of clocks. The
problem of undecidability present in RHA and the subclass of RHA (i.e., MRTA,
SHA, SWA) arises from the possibility that the continuous variables, also called
flow rates (i.e., each variable is a finite-slope variable [HKPV98]), are chosen non-
deterministically from a rectangular set (i.e., an interval), and that resets, guards,
and invariants are defined using rectangular sets.

By inheriting the decidability conditions of TA (i.e., in In TA, the guards and
invariants are limited to the conjunctions of simple integer bounds on the individual
clocks, and the update is a simple assignment of the form x = 0) and only resetting
time (i.e., ẋ = 1) of SWA, our DMTA avoids the undecidability results present in RHA
and the subclass of RHA (i.e., MRTA, SHA, SWA).

This chapter is structured as follows. In section 8.1 we propose to model DRTS
with Derivative Multi-timed Automata (DMTA), an extension of TA and icTA, in
which rate constraints over clock derivatives are attached to the locations of the
automaton. In section 8.2 we showed the parallel composition between DMTA. In
section 8.3, we prove its decidability and present an EXPTIME algorithm for deciding
whether two DMTA are multi-time bisimilar. In section 8.4 we propose DMLν, an
extension of MLν with rate constraints over clock derivatives. We define the syntax
and semantics of DMLν over executions of MLTS with such semantics, and we show
that its model checking problem against DMLν is EXPTIME-complete. Section
8.5, presents some scenarios of distributed real-time systems for DMTA and DMLν.
Section 8.6, presents the functionalities and details related to the implementation
of our algorithms. We also present some experimental results. Finally, section 8.7,
shows the strengths and weaknesses of DMTA and DMLν.
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8.1 An (Derivative) Alternative Semantics for DRTS

Here we define a (derivative) alternative semantics for TA (i.e., Derivative Multi-
timed Automata (DMTA)) that can be used to model DRTS. The semantics of TA
is presented [AD94] with sequential (terms) semantics, such as TLTS, timed bisim-
ulation, and timed words. In contrast, our (derivative) alternative semantics uses
the rate constraints over clock derivatives. The clock derivatives denote the first
derivative of the independent clocks belonging to different processes. The advan-
tages of our (derivative) alternative semantics are (1) Our (derivative) alternative
semantics can work with multi-timed words, MLTS, and rate constraints. (2) With
our alternative semantics, it becomes possible to analyze the local behavior of the
components independently. we now build the necessary notions of rate constraints
and (derivative) multi-timed automata (DMTA).

8.1.1 Rate Constraints

Let Pr oc be a non-empty set of processes. Let X be a finite set of clocks. Let X be
a finite set of clocks and π : X → Proc. Let Ẋ be a finite set of time clock derivatives.
The set Ψ(X ) of rate constraints over the set of clocks X is given by the following
grammar:

ψ := tr ue | ẋ ∼ 1 | ẋ ∼ ẏ |ψ1 ∧ ψ2

where ẋ, ẏ ∈ Ẋ , p, q ∈ Pr oc, p ={x}, q ={y}, x, y ∈ X and ∼ ∈ {<, >, ≤, ≥, =}. A
rate constraint ψ is a conjunction of comparisons of two clock derivative values or a
clock derivative value with a natural constant 1. A classical clock (as in TA) will be
described by ẋ = 1.

8.1.2 Derivative Multi-timed Automata

Inspired by TA, MTA, icTA and DTA [Kri99, ABG+08, AD94, OAS17], we introduce
Derivative Multi-timed Automata (DMTA) to model DRTS. The semantics of a
DMTA is given by our MLTS.

Definition 95 (DMTA). A DMTA is a tuple A = (S, s0,Σ, X ,→dmt a , Inv,R,F,π) over
Proc where :

(i) S is a finite set of locations,
(ii) s0 ∈ S is the initial location,

(iii) Σ is a finite alphabet,
(iv) X is a finite set of clock names,
(v) →dmt a ⊆ S ×Σ×Φ(X )×2X ×S is the finite transition relation,

(vi) Inv : S →∆(X) associates to each location a clock invariant,
(vii) R : S →Ψ(X) associates to each location a rate constraint,

(viii) F ⊆ S is a finite set of final locations.
(ix) π : X → Proc maps each clock to a process.

Definition 96. Given π : X → Proc, a clock valuation ν : X →R≥0 and d⃗ ∈ RPr oc
≥0 : the

valuation ν+π d⃗ is defined by (ν+π d⃗)(x) = ν(x)+ d⃗π(x) for all x ∈ X .
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Figure 8.1: A Derivative Multi-timed Automaton M

Definition 97. Let Pr oc be a non-empty set of processes. Let X be a finite set of clocks
and π : X → Proc. Given a rate constraintψ ∈Ψ(X ) and a tuple of functions τ ∈ Rates,
we note τ satisfies ψ at time t, as (τ, t ) |=ψ. In particular, the formal definition is as
follows:

(τ, t ) |= ẋ ∼ 1 ⇐⇒ τx i s der i vable at t and dτx/d t (t ) ∼ 1

(τ, t ) |= ẋ ∼ ẏ ⇐⇒ τx i s der i vable at t and

τy i s der i vable at t and dτx/d t (t ) ∼ dτy/d t (t )

(τ, t ) |=ψ1 ∧ ψ2 ⇐⇒ (τ, t ) |=ψ1 and (τ, t ) |=ψ2

(τ, t ) |= tr ue ⇐⇒ tr ue

Definition 98 ( Semantics of DMTA). Given a DMTA A = (S, s0,Σ, X ,→dmt a , Inv,R,
F, π) and τ ∈ Rates, the alternative semantics of A is given by a MLTS over X,
denoted by MLTS(A , τ) = (Q, q0, QF , Σ,→ml t s ). The set of states Q consists of triples
composed of a location, a clock valuation, and lastly the reference time: Q = {(s,ν, t ) ∈
S×RX

≥0 ×R≥0 | ν |= Inv(s) and (τ, t) |= R(s)}. The set of final states QF consists of
triples {(s f ,ν, t ) ∈ F×RX

≥0 ×R≥0 | ν |= Inv(s f ) and (τ, t ) |= R(s f )}. The starting state is
q0 = (s0,ν0,0), where ν0 is the valuation that initializes all the clocks to zero. Σ is the
alphabet of A . The transition relation →ml t s is defined by:

(i) Discrete transition: A transition (qi ,a, qi+1) is denoted qi
a−→ qi+1 where qi =

(si ,νi , ti ), qi+1 = (si+1,νi+1, ti+1), a ∈Σ, there exists a transition (si , a,φ,Y , si+1)
∈ →dmt a , such that νi |= φ, νi+1 = νi [Y ← 0], νi+1 |= Inv(si+1), (τ, ti+1) |=
R(si+1), ti = ti+1 and,

(ii) Delay transition: A transition (qi , d⃗ , q ′
i ) is denoted qi

d⃗−→ q ′
i where qi = (si ,νi , ti ),

q ′
i = (si ,νi + d⃗ , ti+1), d⃗ = τ(ti+1)−τ(ti ) and ∀t ∈ [ti , ti+1] : νi + (τ(t)−τ(ti )) |=

Inv(si ) and (τ, t ) |= R(si ).
A path of A for τ ∈ Rates with its (derivative) alternative semantics is an initial

path in MLTS(A ,τ) where discrete and continuous transitions alternate. A multi-
timed word is accepted by A for τ ∈ Rates iff it is accepted by MLTS(A ,τ). The
multi-timed language accepted by A for τ is denoted as L (A ,τ).

Example 38. The Figure 8.1 above shows a DMTA M with the finite alphabet Σ=
{a,b,c,d}, the set of processes Pr oc = {p, q}, the set of independent clocks X = {x, y}, p
= {x} and q = {y}, and rates constraints ẋ ≥ ẏ and ẏ = 1 in location s1, and s2.
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8.2 Parallel Composition of DMTA

The parallel composition of two MLTS for DMTA is as 78. The parallel composition
of two DMTA can be defined as:

Definition 99 (Parallel Composition of DMTA). Let A and B be two DMTA. The
parallel composition of two DMTA A and B, written A ∥B creates a new DMTA C

= A ∥B and C = (SC ,s0
C

,ΣC ,XC ,→dmta
C

, InvC ,RC ,FC ,πC ) where:
(i) SC = SA × SB ,

(ii) s0
C

= (sA , qB),
(iii) ΣC = ΣA ∪ ΣB ,
(iv) XC = XA ∪ XB ,
(v) →ta

C
⊆ SC ×ΣC ×Φ(XC )×2XC ×SC is the transition relation given by: for a

∈ ΣA ∪ ΣB , if (sA , a,φA ,YA , s′
A

) ∈ →dmt a
A

and (sB , a,φB ,YB , s′
B

) ∈ →dmt a
B

then ((sA ,sB), a,φA ∧φB ,YA ∪YB , (s′
A

,s′
B

)) ∈→dmta
C

,
(vi) InvC (sA , sB) = InvA (sA )∧ InvB(sB) for all sA ∈ SA and sB ∈ SB ,

(vii) RC (sA , sB) = RA (sA )∧RB(sB) for all sA ∈ SA and sB ∈ SB ,
(viii) FC = FA × FB ,

(ix) πC = πA ∪ πB .

Definition 100. Let A and B be two DMTA. For any valuations νA and νB over
disjoint sets of clocks XA and XB . XA ⊎ XB with νA ⊎ νB is a valuation. Given
νA ∥B , νA and νB can be denoted as νA ∥B⌋XA

and νA ∥B⌋XB

Let C and D be two DMTA. Given two states qC = (sC ,νC , tC ) of MLTS(C ,τ),
and qD = (sD ,νD , tD ) of MLTS(D,τ) for any τ∈Rates, the unique state of MLTS(C ,τ)
∥ MLTS(D,τ) corresponding to these states is written ((sC , sD), νC ∥D , tC ∥D), where
νC ∥D(x) = νC (x) if x ∈ XC , and νC ∥D(x) = νD(x) if x ∈ XD . The semantics of the
parallel composition C ∥D will be given by means of a MLTS.

Definition 101 (Semantics of the Parallel Composition ). Given two DMTA C and
D, then the MLTS generated by the parallel composition of C and D is a MLTS(C ,τ) ∥
MLTS(D,τ) = (Q,QF ,q0, ((ΣC ∪ΣD )∪RX

≥0),→mlts), where Q = {((sC ,sD ),νC ∥D , tC ∥D ) ∈
((SC ×SD )×RX

≥0 ×R≥0) | νC ∥D |= InvC (sC )∧ InvD (sD ) and νC ∥D |= RC (sC )∧RD (sD )}

is the set of states. The set of final states QF consists of triples {((s f
C

,s f
D

),νC ∥D , tC ∥D) ∈
((SF

C
×SF

D
)×RX

≥0 ×R≥0) | νC ∥D |= InvC (s f
C

)∧ InvD (s f
D

) and νC ∥D |= RC (s f
C

)∧RD (s f
D

)}.
q0 = ((s0

C
, s0

D
),ν0

C ∥D ,0), where ν0
C ∥D is the valuation that assigns 0 to all the clocks. Σ

is the alphabet ΣC ∪ΣD and the transition relation →ml t s is defined by :

(i) Discrete transition: (q,a, q
′
) is denoted q

a−→ q
′

where q = ((sC ,sD ),νC ∥D , tC ∥D ),

q
′ = ((s

′
C

,s
′
D

),ν
′
C ∥D , t

′
C ∥D ), a ∈ ΣC ∪ΣD , there exists a transition sC

a,φC ,YC−−−−−−→ s
′
C

,

sD
a,φD ,YD−−−−−→ s

′
D

, such that νC ∥D |= φC ∧φD , ν
′

= ν[(YC ∪ YD) → 0], ν
′
C ∥D |=

InvC (s
′
C

) ∧ InvD(s
′
D

), ν
′
C ∥D |= RC (s

′
C

) ∧ RD(s
′
D

), t
′ = t

′′
.

(ii) Delay transition: (q, d⃗ , q
′
) is denoted q

d⃗−→ q
′

where q = ((sC ,sD),νC ∥D , t
′
C ∥D),

q
′ = ((sC ,sD),νC ∥D + d⃗ , t

′′
C ∥D), d⃗ = τ(t

′′
C ∥D)− τ(t

′
C ∥D) and ∀t ∈ [t

′
C ∥D , t

′′
C ∥D ] :

νC ∥D + (τ(t)−τ(t
′
C ∥D)) |= InvC (sC ) ∧ InvD(sD) and (τ, t ) |= RC (sC ) ∧ RD(sD),
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Figure 8.2: Parallel Composition of two MTA A and B

Example 39. In Figure 8.2, two DMTA A and B, and their composition A ∥ B

are presented. The automaton A over the Pr oc = {p}, independent clock x and rate
constraint ẋ ≥ 1 in location s1, can execute the actions a, b, with the transitions

s0
a,tr ue,x:=0−−−−−−−−→dmta s1, s1

b,x≥1,;−−−−−→dmta s0. The possible transitions of the automaton
B over the pr oc= {q}, independent clock y and rate constraint ẏ ≥ 1 in location s1,

are r0
b,tr ue,y :=0−−−−−−−−→dmta r1, r1

c,y≥1,;−−−−−→dmta r0. Both components execute in parallel and
synchronize through the action b. The locations of the composition (automaton) are
given as pairs (s0,r0), (s0,r1) with rate constraint ẋ ≥ 1, (s1,r0) with rate constraint
ẋ ≥ 1, and (s1,r1) with rate constraints ẋ ≥ 1 and ẏ ≥ 1.

Theorem 63. Let A and B be two DMTA, then for any τ ∈ Rates, MLTS(A ,τ) ∥
MLTS(B,τ) = MLTS((A ∥B),τ).

Proof. The proof consists in showing that each transition of the MLTS(A ,τ) ∥
MLTS(B,τ) can be found in MLTS((A ∥ B),τ) and vice versa. Let R = { (((sA ,
sB), νA ∥B , tA ∥B), ((sA ,νA , tA ), (sB ,νB , tB))) | νA ∥B(x) = νA (x) ⊎ νB(x) for x ∈
XA ⊎ XB and tA ∥B = tA = tB }.

The proof follows the same lines as the proof in 58. The complete proof for this
Theorem is given in Appendix C (See Theorem 68).

proposition 22. Let M1 and M2 be two MLTS over the actions Σ, then M1 ∥ M2 ≈
M2 ∥ M1.
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Proof. The proof follows the same lines as the proof in 12.

Definition 102 (Compositionality). A binary relation ≈ between two MLTS M1, M2

is compositional if M1 ≈ M2 and M3 ≈ M4 implies M1 ∥ M3 ≈ M2 ∥ M4.

proposition 23. Let M1, M2 and M3 be three MLTS over the set of actions Σ. For any
M1, M2 and M3, ≈ is compositional if and only if M1 ≈ M2 ⇒ M1 ∥ M3 ≈ M2 ∥ M3

(invariant under composition).

Proof. The proof follows the same lines as the proof in 13.

8.3 Decidability

As in MTA (see section 7.4), we present here a fundamental decidable problem
used to reason about behavioral equivalence between different components of a
DRTS using DMTA. Therefore, we will extend the zone-based abstraction [LLW95]
to represent (derivative) multi-timed zone graphs. We show that our multi-timed
bisimulation is decidable over an appropriate (derivative) multi-timed zone graph.

8.3.1 Clock Zones with Independent Clocks

To define the notion of a clock zone [LLW95] over a set of clocks X, we will consider
the setΦ+(X ) of all the diagonal constraints over X . But because our clocks evolve at
rates that can be independent of each other, and because there are rate constraints
associated with locations, we need to adjust certain operations on clock zones. This
is described by rate constraints.

Example 40. Consider a clock zone Z = {(4 ≤ x1 ≤ 7)∧ (2 ≤ x2 ≤ 5)}, rate constraint
ψ = (ẋ2 = 1)∧ (ẋ1 ≥ ẋ2), and clock invariant Inv = {(x1 ≤ 6)∧ (x2 ≥ 4)}. Figure 8.3
presents an example of a) a clock zone Z , b) the derivative lines (rate cone), c) the
time successor of the clock zone Z (Z ↑ψ). The time successor of Z is: Z ↑ψ =
{(x1 ≥ 4)∧(1 ≤ x2 ≤ 5)∧(x2−x1 ≤ 1)}. Figure 8.4 presents an example of the intersection
of the clock zone Z ↑ (Figure 8.3) c) with the invariant Inv = {(x1 ≤ 6)∧ (x2 ≥ 4)}.
Figure 8.5 presents an example of a) a clock zone Z , b) the derivative lines (rate cone),
c) the time predecessor of the clock zone Z (Z ↓ψ). The time predecessor of Z is: Z ↓ψ
= {(x1 ≤ 7)∧ (1 ≤ x2 ≤ 5)∧ (x2 −x1 ≤ 1)}.

8.3.2 Operations on Clock Zones with Independent Clocks

Here, we will extend the semantics of some operations on clock zones to their
multi-timed version (time successor and predecessor). The intersection, restricting
projection, clock reset, and inverse clock reset operations retain the same semantics
as in section 5.3.4.1. We note that clock zones are always convex. To implement our
decidable algorithms, we need to be able to compute successors and predecessors
of zones for delay and action transitions of DMTA.
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Figure 8.3: a) The clock zone Z , b) Derivative lines (rate cone), c) The time successor
of Z (Z ↑ψ)

Definition 103 (Semantic Operations on clock zones). Let Z be a clock zones. The
semantics of the time successor and time predecessor on a clock zone can be defined:

(i) Time successor: Z ↑ψ = {ν+ d⃗ | ν ∈ Z , d⃗ ∈ RPr oc
≥0 ,∃t , t ′ > 0, t ≤ t ′, and ∃τ ∈

Rates, d⃗ = τ(t ′)−τ(t ) and ∃ψ ∈Ψ(X ), (τ, t ) |=ψ},
(ii) Time predecessor: Z ↓ψ = {ν− d⃗ | ν ∈ Z , d⃗ ∈ RPr oc

≥0 ,∃t , t ′ > 0, t ≤ t ′, and ∃τ ∈
Rates, d⃗ = τ(t ′)−τ(t ) and ∃ψ ∈Ψ(X ), (τ, t ) |=ψ}.
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Figure 8.4: The clock zone Z ′ after intersection with the invariant Inv= {x1 ≤ 6∧x2 ≥
4}

proposition 24. Let Z be a clock zones. Then, Z ↑ψ and Z ↓ψ are also clock zones.

Proof. Let Z be zones, then we need to prove the following operations are clock
zones:

(i) Z ↑ψ,
(ii) Z ↓ψ,

The proof follows the same lines as the proof in 14(v). The complete proof for this
Theorem is given in Appendix C (See Propostion 31).

8.3.3 Symbolic Representation Structures

In [Dil90] [BY04] the authors propose a data structure (DBM) for representing clock
zones and manipulating them. The DBM representation is the most common data
structure used for reachability analysis and provides a technique for computing
representations of their sets of reachable configurations. Here we will use the same
data structures (DBMs) [Dil90] [BY04]. However, in our DBMCs (Difference Bound
Matrices with Independent Clocks) representation, we use a set of independent
clocks, which implies that differences of clocks can change over time, since all clocks
can evolve at different rates, instead of differences of clocks as in classical DBMs,
where all clocks evolve at the same time. Thus, each of our DBMCs is associated
with a set of rate constraints over the set of independent clocks. The rate constraints
associated with each of our DBMCs are defined from a finite set of predefined
comparisons involving two clock derivative values or one clock derivative value
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Figure 8.5: a) The clock zone Z , b) Derivative lines (rate cone), c) The time predeces-
sor of Z (Z ↓ψ)

with a natural constant of 1. In the following, the definition of our DBM and the
processing methods for this structure are presented.

8.3.3.1 Difference Bound Matrices with Independent Clocks

In single-timed semantics, a DBM is a (n +1)× (n +1) matrix where an entry (i , j )
is the upper bound of the clock constraint xi − x j , represented as xi − x j ≤ di , j or
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Figure 8.6: a) A clock zone Z and b) Directed weighted graph

xi −x j < di , j . Here, instead of using a difference of perfectly synchronized clocks in
the entries, we will use independent (local) clocks (i.e., because our clocks evolve at
rates that can be independent of each other). Our DBMs and their canonical form
is defined analogously to standard DBMs (see definition 44 and 45). For example,
consider the following clock zone with independent (local) clocks:

Z = [[3 ≤ x1 ≤ 7∧x2 ≥ 0∧3 ≤ x1 −x2 ≤ 5]]

That clock zone can be represented by the matrix D:

D =


x0 x1 x2

x0 (0,≤) (−3,≤) (0,≤)
x1 (7,≤) (0,≤) (5,≤)
x2 (∞,<) (−3,≤) (0,≤)


In Figure 8.6(a) we can see the representation of a clock zone Z and Figure 8.6(b)

we can see the directed weighted graph for the clock zone Z = [[3 ≤ x1 ≤ 7∧ x2 ≥
0∧3 ≤ x1 −x2 ≤ 5]]. Observe that this D does not capture many implied constraints.
For instance, d2,0 = (∞,<) which implies x2 <∞ but since x1 ≤ 7 and x2 − x1 ≤−3,
this bound can be further tightened (canonicalization). Performing canonicalization
to D, we can get the following:

D =


x0 x1 x2

x0 (0,≤) (−3,≤) (0,≤)
x1 (7,≤) (0,≤) (5,≤)
x2 (4,≤) (−3,≤) (0,≤)


In the case of our DBMs with independent clocks, it is possible to decide the re-

lation between weights and nodes using classical operations on zones, as in the case
of standard DBMs. However, we must first define a new data structure for symbolic
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representation of rate constraints, called DBM with clock derivatives (DBMCs). Our
new symbolic data structure is defined in an analogous way to standard DBMs, but
instead of using the difference of the clocks in the entries, we will use the difference
of the clocks derivatives in the entries. We will use our DBMC first to check the con-
sistency of the conjunction of atomic rate constraints using a consistent algorithm
and to check if the conjunction of atomic rate constraints is satisfied. Second, we
will use the difference of clock derivatives computed and present in the entries of
the DBMC to modify the difference of clocks computed and present in the entries of
the DBMC, especially in the time successor and time predecessor. A DBMC is thus
just a normal DBM, but has the role of expressing rate constraints. In the following,
the definition of DBMCs and processing methods for this structure are presented.

Definition 104 (Difference Bound Matrix with Derivative Clocks). A Difference
Bound Matrix (DBMC) over the set of n derivatives clocks {ẋ1, ẋ2, . . . , ẋn} is a (n +1)×
(n +1) square matrix (arrowhead matrix) of ({−1,0,1}× {<,≤}) ∪ {(∞,<)} with rows
and columns indexed by {ẋ0, ẋ1, ẋ2, . . . , ẋn}. The DBMC can be represented as follows:

E = (ei , j )0≤i , j≤n

where each ei , j is of the form (ei , j ,⪯), ⪯ ∈ {<, ≤} and ei , j ∈ {−1,0,1} is called a
bound. Formally, the semantics of DBMC E is the rate constraints:

ψ= (ẋ0 = 0) ∧
n∧

0≤i ̸= j≤n
ẋi − ẋ j ⪯ ei , j

where ẋi is a clock labelling row i , ẋ j is a clock labelling the column j and the clock
ẋ0 is always equal to 0.

Since the variable x0 is always equal to 0, it can be used for expressing rate con-
straints that only involve a single variable (clock derivative). Actually, the language
of rate constraints only allows comparing with 1. Thus, ei ,0 = (ei ,0,⪯) means ẋi ⪯ ei ,0

and ei ,0 = 1 (or ei ,0 = ∞). Similarly, e0, j = (e0, j ,⪯) means −ẋ j ⪯ e0, j . Also, for each
clock difference ẋi − ẋi , let ei ,i = (0,≤) or for each unbounded clock difference ẋi − ẋ j

with i ̸= j and i , j ≥ 1, let ei , j = (0,≤) (or ei , j = ∞). A DBMC E has always satisfied
the definition of rates, which implies that ẋi > 0 for i ≤ i ≤ n, thus E0,1 is at least
(0,<). For instance, consider again the clock zone Z = [[3 ≤ x1 ≤ 7∧0 ≤ x2 ≤ 4∧3 ≤
x1−x2 ≤ 5]], which can be presented by matrix D and the conjunction of atomic rate
constraints ψ= {ẋ2 ≥ 1∧ ẋ2 ≥ ẋ1}, which can be presented by matrix E :

D =


x0 x1 x2

x0 (0,≤) (−3,≤) (0,≤)
x1 (7,≤) (0,≤) (5,≤)
x2 (4,≤) (−3,≤) (0,≤)

, E =


ẋ0 ẋ1 ẋ2

ẋ0 (0,≤) (∞,<) (−1,≤)
ẋ1 (∞,<) (0,≤) (0,≤)
ẋ2 (∞,<) (∞,<) (0,≤)


The canonical form for DBMCs is the same as for standard DBMs. The canon-

ical form algorithm for DBMCs follows the same principles as the classical Floyd-
Warschall shortest path algorithm [Dil90] for the single-timed case. We also need
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Figure 8.7: a) A clock zone Z and b) Directed weighted graph

to check the consistency of the conjunction of atomic rate constraints and whether
the conjunction of atomic rate constraints is satisfied. To check the consistency and
satisfiability of our DBMCs, the following operations are necessary: checking the
standard emptiness of the derivative lines (rate cones) represented by DBMC and
checking whether the derivative lines (rate cones) represented by the DBMC satisfy
a given set of rate constraints. In addition, the following operations transforming
the clock zones thanks to the derivative lines (rate cone) represented by the DBMC
are necessary: time successor and time predecessor.

Thus, the canonical DBM D (see above) representing clock zone Z = [[3 ≤ x1 ≤
7∧ 0 ≤ x2 ≤ 4∧ 3 ≤ x1 − x2 ≤ 5]] and the DBMC E (see above) representing the
conjunction of atomic rate constraints ψ = {ẋ2 ≥ 1∧ ẋ2 ≥ ẋ1}, the operation time
successor returns a DBM D′ (see below) that represents clock zone Z ↑ψ, i.e. all
valuations that can be reached by valuations in Z with delay following a rate that
satisfies ψ. The time successor Z ↑ψ is computed by removing the upper bounds
of all individual clocks, which is done by replacing all entries in the first column of
D (di ,0 and 1 ≤ i ≤ n) by (∞,<) and, because all clocks evolve at rates that can be
independent of each other, the upper bounds of the constraints on the differences
between clocks could be also removed, which is done by replacing the entries in the
diagonal clock constraints of D (di , j and with i ̸= j and i , j ≥ 1) by (∞,≤), when the
entries ei , j = (∞,<) with i ̸= j and i , j ≥ 1).

In Figure 8.7, we assume that the matrices D and E are canonical, and they
represent non-empty clock zone and non-empty derivative lines (rate cone). The
canonical form algorithm and check emptiness algorithm used by ours DBM and
DBMC processing are based on those described in [BY04] [AD94]. In Figure 8.7(a) we
can see the representation of a clock zone Z in conjunction with the rate constraints
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ψ. Figure 8.7(b) we can see the directed weighted graph for the clock zone Z =
[[3 ≤ x1 ≤ 7∧0 ≤ x2 ≤ 4∧3 ≤ x1 −x2 ≤ 5]] and rate constraints ψ= {ẋ2 ≥ 1∧ ẋ2 ≥ ẋ1}:

D′ =


x0 x1 x2

x0 (0,≤) (−3,≤) (0,≤)
x1 (∞,<) (0,≤) (5,≤)
x2 (∞,<) (∞,<) (0,≤)


8.3.3.2 Operations on DBM with Independent Clocks

We need basically to implement two operations on our DBMs: time successor, time
predecessor.

Time Successor

As in DBMs, it is possible to define the time successor operation of a canonical DBM
D concerning a set of rate constraints ψ, which can be presented by a canonical
DBMC E . Represented by two canonical matrices D and E where D = (di , j )0≤i , j≤n

and E = (ei , j )0≤i , j≤n . Computing the time successor operation of a DBM D′ where
D′ = (d′

i , j )0≤i , j<n , consists first in removing of D = (di , j )0≤i , j≤n all the upper bounds

on the values of clocks, that is, for each 0 ≤ i ≤ n, d′
i ,0 = (∞,<). Second, the upper

bounds of the constraints on the differences between clocks are removed, which is
done by replacing the entries in the diagonal clock constraints of D′ (d′

i , j and with
i ̸= j and i , j ≥ 1) by (∞,<), when the entries ei , j = (∞,<) with i ̸= j and i , j ≥ 1.
Algorithm 8.1 describes the time successor operation of a DBM. The algorithm works
as follows: it repeatedly removes the upper bounds of all individual clocks, which is
done by replacing all elements in the first column of D′ by (∞,<) and replacing the
diagonal elements of D′ (d′

i , j and with i ̸= j and i , j ≥ 1) by (∞,<) when the entry
ei , j = (∞,<) with i ̸= j and i , j ≥ 1 (for the strict successor, we can replace the lower
bounds by their strict version).

Time Predecessor

As in DBMs, it is possible to define the time predecessor operation of a canonical
DBM D concerning a set of rate constraintsψ, which can be presented by a canonical
DBMC E . Represented by two canonical matrices D and E where D = (di , j )0≤i , j≤n

and E = (ei , j )0≤i , j≤n . Computing the time predecessor operation of a DBM D′ where
D′ = (d′

i , j )0≤i , j<n , consists first in removing of D = (di , j )0≤i , j≤n all the lower bounds

on the values of clocks, that is, for each 1 ≤ i ≤ n, d′
0,i = (0,≤). Second, the lower

bounds of the constraints on the differences between clocks are removed, which
is done by replacing the entries in the diagonal clock constraints of D′ (d′

i , j and
with i ̸= j and i , j ≥ 1) by (0,<), when the entries ei , j = (0,<) with i ̸= j and i , j ≥ 1.
Algorithm 8.2 describes the time successor operation of a DBM. The algorithm works
as follows: it repeatedly removes the lower bounds of all individual clocks, which
is done by replacing all elements in the first column of D′ by (0,<) and replacing
the diagonal elements d′

i , j and with i ̸= j and i , j ≥ 1 by (0,<) when the entry ei , j
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1 Input: A D = (di , j )0≤i , j≤n and a E = (ei , j )0≤i , j≤n

2 Output: A D′ = (d′i , j )0≤i , j≤n

3 int i, j;
4 DBM D′;
5 DBM TimeSuccOperator(DBM D, DBMC E){
6 for(i=0; i<D.size; i++){
7 D′[i,0] = (∞,<);
8 }
9 for(i=1; i<D.size; i++){

10 for(j=1; j<D.size; j++){
11 if( i ! = j && (E[i,j]== (∞,<) && E[j,i]== (0,≤)){
12 D′[i,j] = (∞,<);
13 }
14 else if( i ! = j && (E[j,i]== (∞,<) && E[i,j]== (0,≤)){
15 D′[j,i] = (∞,<);
16 }
17 else continue;
18 }
19 }
20 return D′;
21 }

Algorithm 8.1: Time Successor Algorithm for independent clocks DBM.

= (0,<) with i ̸= j and i , j ≥ 1 (for the strict predecessor, we can replace the upper
bounds by their strict version).

8.3.4 (Derivative) Multi-timed Zone Graphs

Like TA, DMTA cannot be analyzed by finite-state techniques, since its associated
MLTS has infinitely many states. Therefore, it must be analyzed symbolically. Here
we define the multi-timed zone graph using the independent local clocks and rate
constraints, and we extend the well-known zone graph for TA [AD94] [LLW95]. More
precisely, we extend the symbolic discrete successor and predecessor operations
on clock zones for a DMTA A . These operations on clock zones can be efficiently
implemented on DBM [Dil90] [BY04]. The symbolic discrete successor and prede-
cessor operations on (derivative) clock zones follow the same lines as in Section
7.4.2. The complete definitions are given in the appendix C (see Definitions 116 and
117).

proposition 25. Let A be a DMTA, e = (s, a,φ,Y , s′) ∈ →dmt a be a transition of a
DMTA A and (s,Z ) be a zone, then post(Z ,e) ↑ψ = ((Z ∩ (φ∩ Inv(s))) ↓X ∩ Inv(s′))
and pred(Z ′,e) ↓ψ = ((Z ′ ↑X ∩ φ)∩ Inv(s)).

Proof. Let (s,Z ) be a zone and e = (s, a,φ,Y , s′) ∈→dmt a be a transition of an DMTA
A , then we need to prove the following equalities:
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1 Input: A D = (di , j )0≤i , j≤n and a E = (ei , j )0≤i , j≤n

2 Output: A D′ = (d′i , j )0≤i , j≤n

3 int i, j;
4 DBM D′;
5 DBM TimePredecOperator(DBM D, DBMC E){
6 for(i=0; i<D.size; i++){
7 D′[0,i] = (0,≤);
8 }
9 for(i=1; i<D.size; i++){

10 for(j=1; j<D.size; j++){
11 if( i ! = j && (E[i,j]== (0,<) && E[j,i]== (∞,≤)){
12 D′[i,j] = (0,<);
13 }
14 else if( i ! = j && (E[j,i]== (0,<) && E[i,j]== (∞,≤)){
15 D′[j,i] = (0,<);
16 }
17 else continue;
18 }
19 }
20 return D′;
21 }

Algorithm 8.2: Time Predecessor Algorithm for independent clocks DBM.

(i) post(Z ,e) ↑ψ = ((Z ∩ (φ∩ Inv(s))) ↓Y ∩ Inv(s′)),
(ii) pred(Z ′,e) ↓ψ = ((Z ′ ↑Y ∩ φ)∩ Inv(s)).

The proof follows the same lines as the proof in 15. The complete proof for this
proposition is given in Appendix C (See Propostion 32).

A symbolic semantics of DMTA called (derivative) multi-timed zone graph is
defined as follows:

Definition 105 ((Derivative) Multi-timed Zone Graph). Given a DMTA A , its
infinite multi-timed zone graph (DMZG(A )) is a transition system DMZG(A ) =
(Q, q0, (Σ∪ {ϵ}), →ZG), where:

(i) Q consists of pairs q = (s,Z ) where s ∈ S, and Z ∈Φ+(X ) is a non-empty clock
zone with Z ⊆ Inv(s),

(ii) q0 ∈ Q is the initial zone q0 = (s0,Z0) with Z0 = �∧x∈X x = 0�,
(iii) Σ is the set of labels of A ,
(iv) →DMZG ⊆ Q× (→dmt a ∪ {ϵ})×Q is a set of transitions, where each transition in

DMZG(A ) is a labeled by a transition e = (s, a,φ,Y , s′) ∈→dmta, where s and s′

are the source and target locations, φ is a clock constraint defining the guard of
the transition, a is the action of the edge and Y is the set of clocks to be reset by
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the transition in the DMTA A . For each e ∈ Σ, transitions are defined by the
rules:

(a) For every e = (s, a,φ,Y , s′) in A and zone (s,Z ) already in Q, there exists a
discrete transition (q,e, q ′), where q = (s,Z )

e−→ZG q ′ = (s′,post(Z ,e) ↑ψ)
if post(Z ,e) ̸= ;.

(b) For a clock zone Z , there exists a delay transition (q,ϵ, q ′), where q =
(s,Z )

ϵ−→ZG q ′ = (s,Z ′) and Z ′ = Z ↑R(s) ∩ Inv(s) where Z ′ is called a
time successor of zone Z .

8.3.5 Deciding Reachability in (Derivative) Multi-timed Zone Graphs

Derivative Multi-timed Zone Graphs (DMZG) can be used as the basis for a reach-
ability checking algorithm (see Section 5.3.4). The algorithm C.1 follows the same
structure as the algorithm defined in Section 7.4.3 (see Algorithm 7.1). The Algorithm
C.1 formalizes this process to compute the reachability zone graph for a state q0.
The algorithm constructs a finite symbolic zone graph (DMZGE xtr a+

LU
(A )), given

a DMTA (A ). However, since the multi-timed bisimulation algorithm used here
uses two DMTA (A and B), we must first construct a finite symbolic zone graph
(DMZGE xtr a+

LU
(C )), given the parallel composition of two DMTA (C is the parallel

composition of A and B) with the same actions ΣA = ΣB , but disjoint clocks XA ∩
XB = ;).

proposition 26 (Completeness). Let θ = (s0,ν0, t0)
d⃗0,a0−−−→ (s1,ν1, t1)

d⃗1,a1−−−→ (s2,ν2, t2) . . .
d⃗n−1,an−1−−−−−−−→ (sn ,νn , tn) be an initial (but not necessarily accepting) run of MLTS(A ,τ),
for some τ ∈ Rates. Then, for any state (si ,νi , ti ), where 0 ≤ i ≤ n, appearing in this
run, there exists a symbolic zone (si ,Zi ) added in Q such that νi ∈ Zi .

Proof. The proof follows the same lines as the proof in 16. The complete proof for
this proposition is given in Appendix C (See Propostion 33).

The above proposition tells us that Algorithm C.1 over-approximates reachability.
Now, we can establish the termination of Algorithm C.1, because there are finitely
many E xtr a+

LU zones [BBLP06].

8.3.6 (Derivative) Refinement Algorithm

In algorithm 7.2, we describe a refinement algorithm (see Section 5.3.10) to compute
the multi-timed bisimulation from their zone graph DMZG(C ), where C = A ∥ B.
The state space Q of DMZG(C ) is initially divided into zones that over-approximate
the co-reachable states of A and B. Thus, we introduce the multi-time and discrete
refinement operators.

Definition 106 ((Derivative) Multi-Time Refinement Operator). Let X be a finite
set of clocks. Let (s,Z ) and (s,Z ′) be two zones of the same location, then:

TimePred↑ψ (Z ,Z ′) = {ν ∈Z | ∃ d⃗ ∈RPr oc
>0 , ∃ τ ∈ Rates, ∃ t , t ′′ > 0, t ≤ t ′′,
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d⃗ = τ(t ′′)−τ(t ), (ν+ d⃗) ∈ Z ′, and ∀t ′, t ≤ t ′ ≤ t ′′,∃d⃗ ′, d⃗ ′ = τ(t ′)−τ(t )

then (ν+ d⃗ ′) ∈ (Z ∪Z ′), and ∃ψ ∈Ψ(X ), (τ, t ′) |=ψ}

Then, TimePred↑ψ (Z , Z ′) is the set of valuations in the clock zone Z from which
a valuation of Z ′ can be reached through the elapsing of time, while staying in
(Z ∪Z ′) without entering any other clock zones than Z and Z ′ (i.e., Z ∪Z ′). The
TimePred↑ψ (Z ,Z ′) operator refines Z by selecting the states that can reach Z ′.

proposition 27. Let q = (s,Z ), q ′ = (s,Z ′) ∈ Q be two zones, then TimePred↑ψ
(Z ,Z ′) is a clock zone.

Proof. The proof follows the same lines as the proof in 17. The complete proof for
this proposition is given in Appendix C (See Propostion 34).

For the discrete refinement operator, we use the same definition as in 88. The
Algorithm C.2 follows the same structure as the algorithm defined in Section 7.4.3
(see Algorithm 7.2). Algorithm C.2 consists of two steps as in 7.2: The initial phase, is
responsible for keeping pairs of states in zones so that each pair of states ((sA , sB),
(νA ,νB)) from the same zone q have the same action. The refinement phase consists
of computing the (derivative) timed predecessors (see Definition 107 below) and
the discrete action predecessors (see Definition 90) until a set of convex zones is
reached.

Definition 107 (Time Refinement). LetΠ be a set of zones and q = (s,Z ), q ′ = (s′,Z ′)
be two zones in Π with s = s′. Then for the delay transitions, the refinement function
is defined as follows:

TimeRefines(Z ,Π) = {TimePred↑ψ (Z ,Z ′) | Z ′ ∈Π, q
↑−→ZG q ′}.

proposition 28. Let (s,Z ) be a zone ofΠ and let (eA , eB) be an edge of the DMZG(C ),
then each of TimeRefine(Z ,Π) and DiscreteSigRefine(Z ,Π) forms a set of convex
zones Z in Π.

Proof. The proof follows the same lines as the proof in 18. The complete proof for
this proposition is given in Appendix C (See Propostion 35).

Given a set of zones Π, Algorithm C.2 computes the states ((sA , sB),Z ) from Π

that are bisimilars in particular whether the initial state ((s0
A

, s0
B

),Z0) are bisimilar.

proposition 29. Let Π be an initial set of zones and q = (s,Z ) be a zone in Π. Let
Π′ be a final stable set of zones. Let (sA ,νA ) and (sB ,νB) be two states in q, then
(sA ,νA ) ≈ (sB ,νB) iff ((sA , sB),νA ∪νB) ∈ q ′, where q ′ is a zone of the final set of
stable zones Π′.

We reduce the acceptance problem for LB-ATM to the problem of deciding
whether two DMTA are multi-timed bisimilar.
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Theorem 64. Deciding multi-timed bisimulation between two DMTA is EXPTIME-
complete.

The proof follows the same lines as the proof in 59.

8.4 A (Derivative) Multi-Timed Modal Logic

Here, we propose DMLν, an extension of MLν over clock derivative. We define the
syntax and the semantics of MLν over executions of MLTS with such a semantics,
and we show that its model checking problem against DMLν is EXPTIME-complete.

8.4.1 Syntax of DMLν

We first present the syntax of the logic DMLν. The logic DMLν is defined by the
following formulas:

Definition 108. Let Σ be a finite alphabet, X be a finite set of clocks, Pr oc be a set of
processes, π: X → Pr oc be a function that maps each clock to a process, Ẋ be a finite
set of time clocks derivatives, and Id the set of proposition identifiers. The formulae of
DMLν over Σ, X and Id are defined by the grammar:

ϕ ::= tr ue | f al se | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | [a]ϕ |〈a〉ϕ |

∃ϕ | ∀ϕ | xp i n ϕ | φ | x + c ∼ y + d |ψ | Z

where a ∈ Σ, p ∈ Proc, p = {x, y}, x, y ∈ X, c, d ∈ {0, · · · ,k}, k a non-negative integer, ∼
∈ {=,>,≥,<,≤}, Z ∈ Id, φ ∈Φ(X) a clock constraint, ψ ∈Ψ(X) a rate constraint, [a]ϕ,
〈a〉ϕ are two modalities of the logic, and ∃ϕ and ∀ϕ are the two timed modalities.
Note that we can only compare two clocks of the same process, but we can compare
two clock derivatives of different processes.

The identifiers Id are specified by a declaration environment, D assigning a
DMLν formula to every identifier in order to define properties with maximal fix-

points. A declaration is noted by Z
def= ϕ for D(Z) =ϕ.

8.4.2 Semantics of DMLν

Let A be a DMTA over Proc and τ ∈ Rates and assume that MLTS(A , τ) = (Q,q0, Σ,
→ml t s ) gives its semantics. Now, we interpret DMLν formulas over extended states.
An extended state over Q is a pair (q,µ), where q ∈ Q is a MLTS state (Definition 5)
and µ a valuation for the formula clocks in X. An extended state satisfies an identifier
Z if it belongs to the maximal fixpoint of the equation Z = D(Z). The formal semantics
of DMLν formulas interpreted over MLTS(A , τ) is given by the satisfaction relation,
|= defined as the largest relation satisfying the equivalences in 108.
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Definition 109. Let Σ be a finite alphabet, X be a finite set of clocks and Pr oc be a set
of processes. The semantics of formulae in MLν is implicitly given with respect to a
given MLTS inductively as follows:

(q,µ) |= tr ue ⇔ tr ue
(q,µ) |= f al se ⇔ f al se
(q,µ) |= ϕ1 ∧ϕ2 ⇔ (q,µ) |=ϕ1 and (q,µ) |=ϕ2

(q,µ) |= ϕ1 ∨ϕ2 ⇔ (q,µ) |=ϕ1 or (q,µ) |=ϕ2

(q,µ) |= φ ⇔µ |=φ for φ ∈Φ(X )
(q,µ) |= ψ ⇔µ |=φ for ψ ∈Ψ(X )

(q,µ) |= [a]ϕ ⇔∀q
a−−→ml t s q ′, (q ′,µ) |=ϕ

(q,µ) |= 〈a〉ϕ ⇔∃q
a−−→ml t s q ′, (q ′,µ) |=ϕ

(q,µ) |= x i n ϕ ⇔ (q,µ[x → 0]) |=ϕ
(q,µ) |= ∃ϕ ⇔∃d⃗ ∈RPr oc

≥0 ,∃q ′ ∈ Q, such that q
d⃗−−→ml t s q ′,

(q,µ+π d⃗) |=ϕ
(q,µ) |= ∀ϕ ⇔∀d⃗ ∈RPr oc

≥0 ,∀q ′ ∈ Q,such that q
d⃗−−→ml t s q ′,

(q,µ+π d⃗) |=ϕ
(q,µ) |= x + c ∼ y + d ⇔µ(x) + c ∼µ(y) + d
(q,µ) |= Z the maximal fixpoint in D(Z)

Two formulae are equivalent iff they are satisfied by the same set of extended
states in every MLTS.

Definition 110. Let A be a DMTA and ϕ ∈ DMLν, then A |= ϕ iff ∀τ ∈ Rates,
MLTS(A ,τ) |= ϕ.

Theorem 65. Let Pr oc be a set of processes. Let M = (Q, q0,Σ,→ml t s ) be a MLTS
and q1, q2 be multi-timed bisimilar states in Q. Let µ be a clock valuation for the
formula clocks in X , then the extended states (q1,µ) and (q2,µ) satisfy exactly the
same formulae in MLν.

The proof follows the same lines as the proof in 60.

Theorem 66. Let A1 and A2 be two DMTA and ∀ ϕ formula in the logic DMLν. If
(A1 |= ϕ iff A2 |= ϕ) then A1 ≈ A2.

Proof. (sketch). A proof of this theorem may be obtained from the characteristic
property of TA [LLW95].

proposition 30. Given two DMTA A1 and A2, if A1 ≈ A2 and A1 |= ϕ then A2 |= ϕ.

8.4.3 Examples of Properties

Here, we use DMLν formulas to express multi-timed properties.

Example 41. Consider the DMTA M described in Figure 8.1. Let Pr oc = {p, q} be a
set of processes, where p= {x}, q = {y}, x, y ∈ X and ẋ , ẏ ∈ Ẋ . The initial state (q0,µ0)
(i.e., q0 = (S0,ν0)) satisfies the following DMLν formula ϕ:
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ϕ = y i n ∃(( 2 ≥ y ≥ 0 ∧ ẋ > ẏ ∧〈a〉 S1) ∧ (x ≥ 1 ∧ ẏ = 1) ∧ 〈a〉 S1)

Intuitively, this formula means that the action a can be performed by the process q
after a delay between 0 and 2, and satisfying the rate constraint ẋ > ẏ , for instance
1 and the action a can be performed by the process p after a delay 1 time units, and
satisfying the rate constraint ẏ > 1.

Example 42. Consider the DMTA A described in Figure 8.8. The state (q1,µ1) (i.e.,
q1 = (S1,ν1)) satisfies the following DMLν formula ϕ:

ZS1 = xp i n ∃(xp ≤ 10 ∧ ẋ > 1 ∧ ẏ = 1 ∧ 〈b〉 ZS1 )∧ [b] (xp ≤ 10 ∧ ẋ > 1 ∧ ẏ =
1 ∧ xp i n ZS1 )∧∀ ZS1 ∨ y q i n ∃(y q ≤ 9 ∧ 〈b〉 S0) ∧ xp i n (〈b〉 S0)

Intuitively, this formula means that the action b can be performed by the process p
before a delay 10 time units (self-loop) or the action b can be performed by the process
q before a delay 9 time units.

S1S0

a, x > 3,  x : = 0 

x < 7 b, y ≤ 9, x := 0, y :=0 

x < 10, b, x ≔	0 

ẋ > 1 ∧  = 1  

Figure 8.8: A Multi-timed Automata A

Theorem 67. The model checking problem of DMLν on DMTA is EXPTIME-complete.

The proof follows the same lines as the proof in 62.

8.4.4 Satisfiability Checking

The satisfiability checking problem, which is the dual of the model checking problem,
is to check whether a given ϕ formulae is satisfied by a multi-timed automaton A .
Formally, letϕ be a DMLν formula and A be a DMTA, then the satisfiability problem
(A |= ϕ) is decidable.

8.5 Application of DMTA and DMLv

In this section, we present the experimental results related to our (derivative) alter-
native semantics. We introduce the FireWire - IEEE 1394 protocol and show how
this protocol can be modeled as a DMTA. We also describe the properties of this
protocol in DMLν.
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8.5.1 FireWire - IEEE 1394 Protocol

FireWire - IEEE 1394 is a high-performance serial communications bus that supports
peer-to-peer, synchronous, and asynchronous data transfers between multimedia
devices. The bus is hot-plug-and-play and can work with a wide variety of devices.
The architecture protocol is organized in arbitrary topologies where nodes are con-
nected by cables (i.e., channels). The physical topology of the bus is represented by
a logical tree structure, where the root (leader) mediates access to the bus. The bus
configuration consists of three phases: (1) bus initialization, (2) tree identification,
and (3) self-identification. In the second phase, the tree identification protocol is
initiated to select one of the nodes as the root of the tree. If the tree topology changes
(i.e., a device joins/leaves the tree), a reset occurs and a new leader election process
is restarted. The tree discovery protocol is initiated by the leaf nodes of the tree. Leaf
nodes start by sending par ent_si g nal requests to their nearest neighbor nodes.
When a node receives a par ent_si g nal request, it is marked as a child and sends a
chi l d_si g nal request. At the end of the second phase, two neighboring nodes may
be sending par ent_si g nal to each other. This conflict is resolved by forcing both
nodes to resend requests after a random delay. Figure 8.9 gives an overview of the
FireWire protocol, inspired by the case study [DLL+11], where the considered topol-
ogy is represented by devices (nodes) and cables (channels) and their interactions.
The nodes and channels (one wire for each direction) are modeled by TA.
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Figure 8.9: FireWire component composition

Here, we consider the FireWire model described in [DLL+11] and [CAS01]. We
show how DMTA can be used to model FireWire with independent clocks and rate
constraints.

8.5.2 Modeling the FireWire - IEEE 1394 Protocol in DMTA

In [DLL+11] and [CAS01], TA were used to model the FireWire protocol. These TA
consists of an automaton for each node, an automaton for each wire (cable), and a
parallel composition between them. The node automaton determines whether a
node is a root or a child. The wire automaton models the unidirectional communica-
tion between nodes. Here, we extend the FireWire protocol with independent clocks.
Nodes can be modeled as MTA. For each node, we can construct a DMTA that is
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able to process the requests of the leader election within the appropriate time. Here
we model with our DMTA a simplification of node automata taken from [CAS01],
but without the wire automata. For the Node1 (or Node2) of Figure 8.9, this is as
follows

s2

s0

contention 

s3

s1

fast slow 

snd_ack 

s7 s6

x:=0 

leader 

x:=0 

child

s4 s5

rcv_ack 

x:=0 

rcv_req 

snd_req 

rcv_req 

rcv_req 

x:=0 x:=0 

x ≤85 

x ≥76 

 wait

x ≤167

x ≥159 

wait

x:= 0 

x:= 0 x:= 0 

ẋ >1 ẋ =1 

ẋ >1 ẋ =1 

x ≤4 

x ≤4 x ≤4 

x:= 0 

Figure 8.10: A simplified modeling of a node (FireWire Protocol from [DCBB19]) in
DMTA

Figure 8.10 below shows a DMTA A for the Node1 of Figure 8.9 with the finite
alphabet Σ ={ r cv_r eq , snd_r eq , r cv_ack, snd_ack, w ai t , f ast , sl ow , l eader ,
chi l d , contenti on }, Pr oc = {p}, independent clocks X = {x}. The actions f ast or
sl ow correspond to the start of the node (node1). Then, in location S0 there is a
choice between moving to location S2 with action fast (faster clock), invariant x ≤ 85
and rate constraint ẋ > 1 or location S1 with action slow (slower clock), invariant
x ≤ 167 and rate constraint ẋ = 1. In both cases, we move to a location where
invariant and rate constraints are satisfied. the processors. In location S3, we also
have a choice between moving to location S4 with action r cv_r eq , invariant x ≤ 4
and rate constraint ẋ > 1 or location S5 with action snd_r eq , invariant x ≤ 4 and
rate constraint ẋ = 1.

8.5.3 Properties of the FireWire Protocol in DMLν

Example 43. Consider the DMTA A described in Figure 8.10. The initial state (q0,µ0)
(i.e., q0 = (S0,ν0)) satisfies the following DMLν formula (property) ϕ:

ϕ = x i n ∃((x ≤ 85 ∧ ẋ > 1 ∧ 〈 f ast〉 S2) ∨ ∃(x ≤ 167 ∧ ẋ = 1 ∧ 〈sl ow〉 S1))
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Intuitively, this formula means that the action f ast can be performed by the node 1
(p) before a delay 4 time units and thereby to reach the S2 location where the invariant
x ≤ 85 and rate constraint ẋ > 1 are satisfied, or the action sl ow can be performed
before a delay 4 time units and thereby to reach the S1 location where the invariant
x ≤ 167 and rate constraint ẋ = 1 are satisfied,

8.5.4 Fischer’s Protocol

The Fischer protocol system [ACH+95] consists of several processes, all of which
attempt to access a shared resource. Access to this resource is controlled by Fischer’s
mutual exclusion algorithm [ACH+95]. In TA, each process is modeled by four
locations [DOTY96]. An additional automaton models access to the critical section
by label synchronization with the automatons [DOTY96]. Here we consider Fischer’s
protocol described in [ACH+95]. We show how DMTA can be used to model Fisher’s
protocol with independent clocks and rate constraints.

8.5.5 Modeling the Fischer’s Mutual Exclusion Protocol in DMTA

In [DOTY96] and [RMS16], TA was used to model Fischer’s protocol. These TA
consists of an automaton for each process and an automaton to model access to the
critical section. Here, we extend Fisher’s protocol with independent clocks for each
process and rate constraints. Figure 8.11 shows a protocol process:

s2
(Critical)

s0 
(uncritical)

s3
(Check)

s1
(Assign)

a_14 a_11 

x:=0 x:=0 

x ≥3 

a_13

x ≤1

a_12

ẋ >1 
ẋ >1 

ẋ =1 

ẋ =1 

x:=0 

x > 1

x ≥3 a_not_15

Figure 8.11: A process p1 (Fischer’s protocol from [DOTY96]) in DMTA

Figure 8.11 below shows a DMTA A for the pr ocess1 of the Fischer’s Protocol
with the finite alphabet Σ ={ a_11, a_12, a_13, a_14, a_not_15}, Pr oc = {p1}, inde-
pendent clocks X = {x}. Then, in location S0 with rate constraint ẋ = 1 and action
a_11, there exists only one transition to location S2. In location S1 with invariant
x ≥ 1, rate constraint ẋ > 1 and action a_12, there exists a transition to location S3. In
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location S3 with rate constraint ẋ = 1, we have a choice between moving to location
S2 with action a13, rate constraint ẋ > 1 or location S0 with action a_not_15 and
rate constraint ẋ = 1. In both cases, we move to a location where invariant and rate
constraints are satisfied. Finally, in location S2, there exists only one transition to
location S0 with action a14 and rate constraint ẋ = 1.

8.5.6 Properties of the FireWire Protocol in DMLν

Example 44. Consider the DMTA A described in Figure 8.11. The initial state (q0,µ0)
(i.e., q0 = (S0,ν0)) satisfies the following MLν formula (property) ϕ:

ϕ = x i n ∃(x ≤ 1 ∧ ẋ > 1 ∧ 〈a11〉 S1)

Intuitively, this formula means that the action a11 can be performed by the process p1
before a delay 4 time units and thereby to reach the S1 location where the invariant
x ≤ 1 and rate constraint ẋ > 1 are satisfied,

8.6 Implementation

In this section, we present the functionalities and details related to the implemen-
tation of our algorithms of model checker and multi-timed bisimulation. We also
present some experimental results.

8.6.1 Implementation of the Multi-timed bisimulation Algorithms

We have implemented a tool (called MUTES1) based on the algorithms presented in
section 8.3.5 (parallel composition of two DMTA (A and B), symbolic (derivative)
multi-zone graph, and multi-timed bisimulation). We have used the Java 8 version
in the implementation of our tool. As input, our tool receives two UPPAAL file
formats (UPPAAL model) [UPP]. UPPAAL is a tool for modeling, simulation, and
verification of networks of TA extended with data types, user functions, clocks, and
synchronous communication channels [UPP]. A UPPAAL model consists of several
components: (1) Declarations: consisting of global declarations, (2) Templates:
describing processes as timed automata, (3) System Declarations: consisting of
process instantiations. In addition, UPPAAL supports three types of formats: XML,
XTA, and TA. However, to be able to represent our DMTA, we need to add to the
(original) UPPAAL model (i.e., inside the Templates component) the ability to define
processes, rate constraints, independent clocks, and map clocks to processes. Either
by using the XML file (see Figure 8.12) or by using the XTA language (see figure
8.13). The (DMTA) UPPAAL model of figures 8.12 and 8.13 is shown in Figure 8.14
(graphical user interface).

We have used the ANTLR parser generator [Par13] to read the XML files gen-
erated by UPPAAL, which are used by our tool to identify the independent clocks,
transitions, invariants, rate constraints, guards, and build automata according to

1MUTES source code is available: https://github.com/jortizve/MUTES
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1 <?xml version="1.0" encoding="utf-8"?>
2 <!DOCTYPE nta PUBLIC ’-//Uppaal Team//DTD Flat System 1.1//EN’ ’http://www.it.uu.se

/research/group/darts/uppaal/flat-1_2.dtd’>
3 <nta>
4 <declaration>// Place global declarations here.</declaration>
5 <template>
6 <name x="5" y="5">Template</name>
7 <declaration>// Place local declarations here.
8 clock x, y;
9 proc p,q;

10 p.x;
11 q.y;
12 </declaration>
13 <location id="id0" x="-450" y="34">
14 <name x="-460" y="0">S0</name>
15 </location>
16 <location id="id1" x="-229" y="34">
17 <name x="-239" y="0">S1</name>
18 <label kind="invariant" x="-280" y="59">x’ &gt;= y’ &amp;&amp; y’ = 1</label>
19 </location>
20 <location id="id2" x="-25" y="34">
21 <name x="-35" y="0">S2</name>
22 <label kind="invariant" x="-59" y="51">x’ &gt; y’ &amp;&amp; y’ = 1</label>
23 </location>
24 <init ref="id0"/>
25 <transition>
26 <source ref="id0"/>
27 <target ref="id1"/>
28 <label kind="guard" x="-382" y="-59">x&gt; 1 &amp;&amp; y&lt;=1</label>
29 <label kind="synchronisation" x="-356" y="-42">a!</label>
30 <label kind="assignment" x="-331" y="-42">y:=0</label>
31 <nail x="-339" y="-25"/>
32 <nail x="-331" y="-25"/>
33 </transition>
34 ...
35 </template>
36 <system>// Place template instantiations here.
37 Process = Template();
38 // List one or more processes to be composed into a system.
39 ...
40 </nta>

Figure 8.12: XML file

the syntax of DMTA. After parsing our two xml input files (i.e., two MTA models),
our tool: (1) generates a DMTA C, which is a parallel composition of two DMTA
input files (A and B) with the same actions ΣA = ΣB , but disjoint clocks XA ∩ XB

= ;, (2) build a finite symbolic multi-timed zone graph given the DMTA C (i. e.,
MZGE xtr a+

LU
(C )), (3) and perform a refinement algorithm to check the (derivative)

multi-timed bisimulation between the two DMTA models. Figure 8.15 shows an
overview of our tool (MUTES).

In the building of the multi-timed zone graph described above (2), we used
difference bound matrices (DBM) [Dil90] [BY04] and difference bound matrices
with Clock derivatives (DBMC) as a data structure to represent and manipulate
(Derivatives) multi-timed zones. The UPPAAL grammar has been extended to use
the semantics of DMTAs such as rates constraints and clock derivatives (see Figure
8.16).
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Figure 8.13: XTA format

Figure 8.14: UPPAAL GUI
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Figure 8.15: MUTES Tool

8.6.2 Experimental Evaluation

In this section, we present experimental results to illustrate the practical perfor-
mance of our tool with various case studies. Due to the lack of real case stud-
ies related to independent clocks and rate constraints, we have used some real
case studies taken from the community benchmarks. Our studies come from UP-
PAAL specifications of these cases are available at https://github.com/farkasrebus/
XtaBenchmarkSuite (community benchmarks). For each case study, we consider the
largest and most important automaton (or process in UPPAAL) from the automata
network, and we define a single process where all clocks belong to this process. We
also set the derivative of the clocks to 1.

Gear Control (GC). The GC models a simple gear controller for vehicles [LPY98].
The GC model contains 24 states, of which 10 have invariants. All invariants are
of the form x ≤ c for a clock x and constant c. There are 30 transitions, of which 2
transitions have guards of the form x < c and 2 transitions have guards of the form x
≥ c, for some clock x and constant c.

Collision Avoidance (CA). The CA case models a protocol where different agents
want to get access to Ethernet through a shared channel [JLS96]. The CA model has
6 states and 12 transitions, of which 9 transitions have guards of the form x == c
and 4 transitions have guards of the form x < c, for some clock x and constant c.

Train Gate Controller (TGC). The TGC models a railway system that controls
access to a bridge for several trains [UPP]. The bridge is a shared resource that may
be accessed only by one train at a time. The TGC model has 14 states and all of
them have invariants. All invariants are of the form x < c for a clock x and constant
c. There are 18 transitions, of which 4 transitions have guards of the form x < c and
4 transitions have guards of the form x > c, for some clock x and constant c.

A combined Gear control (CGC). The CGC models a (manually) combined gear
controller for vehicles [LPY98]. The CGC model contains 85 states, of which 20 have
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1 NTA : ’nta’ ;
2 DECLARATION : ’declaration’ ;
3 TEMPLATE : ’template’ ;
4 LOCATION : ’location’ ;
5 NAME : ’name’ ;
6 TRANSITION : ’transition’ ;
7 SOURCE : ’source’ ;
8 TARGET : ’target’ ;
9 NAIL : ’nail’ ;

10 PROCESS : ’proc’;
11 ...
12 RATE : ’"rate"’;
13 INVARIANT : ’"invariant"’ ;
14 SYNCHRONIZE : ’"synchronisation"’ ;
15 GUARD : ’"guard"’ ;
16 ASSIGNMENT : ’"assignment"’ ;
17 SELECT : ’"select"’ ;
18 ...
19 // Atomic types
20 INT : ’int’ ;
21 CLOCK : ’clock’ | ’ clock’ ’;
22 CHANNEL : ’chan’ ;
23 BOOL : ’bool’ ;
24 DOUBLE : ’double’ ;
25 SCALAR : ’scalar’ ;
26 ...
27 // Operations
28 ASSIGN : ’=’
29 | ’:=’
30 | ’+=’
31 | ’-=’
32 | ’*=’
33 | ’/=’
34 | ’%=’
35 | ’|=’ | ’&=’ | ’^=’ | ’<<=’ | ’>>=’
36 ;

Figure 8.16: Part of MUTES grammar

invariants. All invariants are of the form x ≤ c for a clock x and constant c. There
are 120 transitions, of which 10 transitions have guards of the form x < c, and 10
transitions have guards of the form x ≥ c, for some clock x and constant c.

Using these original models, we consider an experimental framework for running
our tool. We use an existing technique called mutation testing (MT) [JH11], which
creates mutants of the system by injecting artificial defects via predefined mutation
operators. Then one can run tests on the system and a mutant and compare the
obtained results: if they are different, the mutant is said to be killed (or distinguished)
by these tests. It is possible to measure the effectiveness of the tests by the muta-
tion score, i.e. the percentage of mutants killed over the total number of mutants
generated. MT has long been a mostly code-based approach [PM10, FA14, Off11],
but model-based mutation testing (MBMT) helps to automatically identify defects
related to missing functionality and misinterpreted specifications [BG85] that are
difficult to identify through code-based testing [How76, VM97]. Not all mutants are
useful, however. Some of them may be equivalent, i.e. they exhibit the same behavior
as the original system despite their syntactic difference [PKZ+18]. Therefore, no test
case can distinguish the mutant from the original system. Similarly, duplicate mu-
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GC CA TGC CGC

TMI 13 9 14 36
TAD 501 26 179 1,625
SMI 12 2 12 27
CXL 0 1 4 4
CXS 2 1 4 6
CCN 2 2 8 10
Total 533 41 222 1713

Table 8.1: Number of generated mutants per operator

tants are mutants that exhibit the same behavior as other mutants [PJHL15,PKZ+18].
Preventing and removing such useless mutants reduces the computational cost of
MT and builds more confidence in mutation scores. Recently, Basile et. al. [Bt-
BCL20] tackled the equivalent mutant problem for TA. They defined mutation
operators that prevent mutants from refining the original system [BtBCL20,BBL+22].
Basile et al. [BtBCL20] proposes six mutation operators on TA (UPPAAL), designed
to avoid the generation of mutants that are subsumed by construction. Three of
the six mutation operators in [BtBCL20] are time-independent: transition missing
(TMI) removes a transition, transition add (TAD) adds a transition between two
states, state missing (SMI) removes a state (other than the initial state) and all its
incoming/outgoing transitions. The other three time-related operators are con-
stant exchange Larger (CXL) increases the constant of a clock constraint, constant
exchange Smaller (CXS) decreases the constant of a clock constraint, and clock con-
straint negation (CCN) negates a clock constraint. The main idea in [BtBCL20] is
to perform a refinement check between the mutant and the system model, using
ECDAR (UPPAAL) [LLNN17]. However, this technique does not address duplicate
mutants; in our experiments, we used our MUTES tool to detect duplicate mutants
and assess the behavioral equivalence between two mutants. Although the duplicate
mutant problem is not related to our thesis, we used this problem to measure the
scalability and performance of our multi-timed bisimulation algorithm in detecting
duplicate mutants. Based on the guidelines of [BtBCL20, BBL+22], we designed
and implemented the six operators (see above) that do not generate equivalent
mutants but can generate duplicate mutants. The six operators were written in
Java 8 and use the ANTLR library to parse the model and generate syntactically
correct and non-equivalent mutants (thanks to the operators). The implementation
of the six operators, case studies, and results are available on our companion website
https://github.com/jortizve/OperatorsImplementation.

We have applied the six operators to the four case studies presented above. This
results in a total of 2509 mutants as presented in Table 8.1. We then apply our multi-
timed bisimulation algorithm. We ran our experiments on a UBUNTU 21.10 × 86_64
GNU/Linux machine with 16 cores, 2.2 GHz, 32GB RAM.

Table 8.2 reveals that mutant duplicates represent up to 32% of the total number
of mutants, justifying the need for duplicate prevention and removal techniques.
Our multi-timed bisimulation algorithm has good scalability overall (see Table 8.3).

198

https://github.com/jortizve/OperatorsImplementation


Case GC CA TGC CGC

ratio Bisimulation 41/533 12/41 71/222 373/1,713

Table 8.2: Proportion of mutant duplicates

Case GC CA TGC CGC

average execution time(s) 3.9 (st=0.54) 2.3 (st=0.71) 2.8 (st=1.05) 17.5 (st=3.9)

Table 8.3: The average execution time(s) using multi-timed bisimulation (BI) and
the standard deviation (st).

8.6.3 MULTI-TEMPO Tool

We have implemented a tool (called MULTI-TEMPO) based on the semantics pre-
sented in section 98 (Semantics of DMTA). We used the Java 8 version in the im-
plementation of our tool. MULTI-TEMPO2 is an integrated tool environment for
modeling and simulation of DRTS. MULTI-TEMPO provides a graphical user inter-
face (see Figure 8.17) with two main parts: a description language and a simulator.
The description language is a textual command language used to model the behavior
of DRTS with clocks, locations, edges, invariants, and rate constraints (see Figure
8.17 (top left)). The simulator allows dynamic executions of a modeled system (see
Figure 8.17 (bottom center)). When running the tool, the first step is to describe
the distributed and real-time system (see Figure 8.17 (top left)) and then update the
model using the Update Model below (see Figure 8.17 (top right)). The second step is
to simulate the modeled system using the Start Random Simulation (see Figure 8.17
(bottom center)) or to step through each transition present in the modeled system
using the Take Discrete Transition.

A simple example of a modeled system (program) is shown in Figure 8.18. There
are five main sections in the specification of an automaton in MULTI-TEMPO:
clocks, locations, actions, edges, init.

The clocks lists the possible independent clocks of the modeled system. In Figure
8.18 the clocks are x and y . The locations in our tool are represented by letters.
Locations are connected by edges. Locations are labeled with invariants and rate
constraints. Invariants are expressions and therefore follow the syntax of expressions.
An invariant can be a conjunction of simple conditions on clocks, the constraint
must be given by an integer expression. In addition, rate constraints are supported
and are declared with invariants. Rate constraints expressions are specified and
are part of the conjunction in the invariant. Actions list the possible actions of
the modeled system. Locations are connected by edges. Edges are annotated with
locations, guards, actions, and reset. Each modeled system must have exactly one
initial location. The initial location is described by the expression init. The grammar
for modeling DRTS in MULTI-TEMPO is given by (see Figure 8.19):

2MULTI-TEMPO source code and jar are available: https://github.com/jortizve/MULTI-TEMPO
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Figure 8.17: MULTI-TEMPO Tool

1 automaton Z {
2 clocks={x,y}
3 locations={A, B: rates=x’>=1 && y’>= 1, C}
4 actions={a, b, c}
5 edges ={(A, guard= x>=1 && y >= 2, a, reset={x, y}, B),
6 (B, guard= x>=1 && y >= 2, b, C), (C, c, reset={x,y}, A)}
7 init = A
8 }

Figure 8.18: A simple program in MULTI-TEMPO

8.6.4 MIMETIC Tool

We have implemented a tool (called MIMETIC3) for the verification (automatic
model-checking) of DRTS, based on the semantics presented in section 98 (seman-
tics of DMTA) and section 108. We have used Java 8 version in the implementation
of our tool. MIMETIC provides a graphical user interface (see Figures 8.20 and 8.21)
with two main parts: select the XML file (UPPAAL file) and writing a DMLv formula
(text box).

We have used the ANTLR parser generator [Par13] to read the XML file gen-
erated by UPPAAL and the DMLv formula text box) used by our tool to identify
the independent clocks, transitions, invariants, rate constraints, guards, and build
automata according to the syntax of DMTA and DMLv. After parsing the xml input
files and the DMLv formula, our tool performs a model checking algorithm to verify
that a DMTA model satisfies a DMLv formula. Figure 8.22 shows an overview of our
tool (MIMETIC).

3MIMETIC source code and jar are available: https://github.com/jortizve/MIMETIC
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1 model : block automaton+;
2 block : statement*;
3 statement : varDeclaration # VarDeclarationSt
4 | expr # ExprSt
5 | ’print’ expr # PrintSt
6 | ’return’ expr # ReturnSt
7 ;
8 ...
9 type : ’num’ ;

10 varId : IDENTIFIER (’=’ initialiser)? ;
11 initialiser : expr ;
12 automaton : ’automaton’ IDENTIFIER
13 ’{’ (locationType | clockType | actionType | edgesType)*
14 initLocation
15 block
16 ’}’ ;
17 locationType: ’locations’ ’=’ ’{’ location (’,’ location)* ’}’ ;
18 clockType : ’clocks’ ’=’ ’{’ IDENTIFIER (’,’ IDENTIFIER)* ’}’ ;
19 actionType : ’actions’ ’=’ ’{’ IDENTIFIER (’,’ IDENTIFIER)* ’}’ ;
20 edgesType : ’edges’ ’=’ ’{’ edge (’,’ edge)* ’}’ ;
21 location : IDENTIFIER (’:’ ’invariant’ ’=’ guard)?
22 (’:’ ’rates’ ’=’ ’{’ IDENTIFIER ’=’ expr (’,’ IDENTIFIER

’=’ expr)* ’}’)?;
23 initLocation: ’init’ ’=’ IDENTIFIER ;
24 edge : ’(’ (’source’ ’=’)? IDENTIFIER ’,’
25 (’guard’ ’=’ guard ’,’)?
26 (’action’ ’=’)? IDENTIFIER ’,’
27 (’reset’ ’=’ ’{’ IDENTIFIER (’,’ IDENTIFIER)* ’}’ ’,’ )?
28 (’target’ ’=’)? IDENTIFIER’)’ ;
29 guard : consGuard ((’and’ | ’&&’) consGuard)*
30 ;
31 consGuard : expr ;
32 ...
33 arguments : (expr (’,’ expr)*)? ;
34

35 expr : op=(’+’ | ’-’) expr # Unary
36 | expr ’*’ expr # Mul
37 | expr op=(’+’|’-’) expr # AddSub
38 | expr op=(’<=’|’>=’) expr # CompareExpr
39 | IDENTIFIER ’\’’ # RateExpr
40 | DOUBLE # DoubleExpr
41 | IDENTIFIER # IdExpr
42 | ’(’ expr ’)’ # ParensExpr
43 | IDENTIFIER ’=’ expr # AssignExpr

Figure 8.19: Part of MULTI-TEMPO grammar

The grammar for modeling and specifying properties in MIMETIC is given by
(see Figures 8.23 and 8.24) :

8.7 Strengths and Weaknesses of the Formalisms

This section aims at showing the strengths and weaknesses of the two formalisms
presented in this chapter.

8.7.1 Strengths

The main strengths are the incorporation of rate constraints over clock derivatives,
an extension of MTA with the notion of rate constraints, a forward reachability
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Figure 8.20: MIMETIC Tool (Property is satisfied)

Figure 8.21: MIMETIC Tool (Property is not satisfied)
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Figure 8.22: MIMETIC Tool

algorithm for the parallel composition of two DMTA, and a decision algorithm
for multi-timed bisimulation using the (derivative) zone-based technique. The
(derivative) multi-timed bisimulation algorithm is EXPTIME-complete. Another
strength is the extension of MLν with rate constraints (DMLν). The model check for
the extended DMLν formula interpreted over DMTA is EXPTIME-complete. The
advanced DMLν logic is sound and complete.

8.7.2 Weaknesses

Since DMTA is an extension of TA and MTA, it inherits all the weaknesses of TA and
MTA (TA is neither determinizable nor complementable, and its inclusion problem
is undecidable).

8.8 Wrap up

This chapter introduces Derivative Multi-timed Automata (DMTA), which are an
extension of icTA and MTA, but with alternative semantics based on the concepts
of independent clocks and rate constraints. In the second section, thanks to our
definition of rate constraints, we were also able to extend the semantics of MTA
(DMTA). We also extended the composition between two MTA (DMTA). In the third
section, we have shown an EXPTIME algorithm for deciding whether two DMTA are
multi-timed bisimilar. In the fourth section, we have extended the timed modal MLν
logic with independent clocks and rate constraints. This gives us the multi-timed
modal DMLν, which we have shown to be PSPACE-complete. In the fifth section, we
have shown some examples of distributed real-time models made over DMTA and
DMLν. In the sixth section, we have shown the functionalities and details related to
the implementation of our algorithms. We have also presented some experimental
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1 document : automataDeclr logicDeclr ;
2

3 automataDeclr : AUTOM ’:’ ID ’[’
4 clocksDeclr
5 locations
6 transitions
7 invariants
8 atomicProps
9 ’]’ ’;’

10 ;
11 clocksDeclr : CLOCKS ’:’ ID (’,’ID)* ;
12 locations : LOCATIONS ’:’ ID (’,’ID)* ;
13 transitions : transition (’,’transition)* ;
14 transition : ID ’-’ ID(’!’)? (’,’ clockConstraint)? ’,’ edge;
15 edge : (’{’ID’}’)? ’->’ ID ;
16 invariants : INVAR ’:’ ID SAT clockConstraint (’,’ ID SAT clockConstraint )

;
17 atomicProps : ATOMIC PROPOSITIONS ’:’ ID SAT proposition (’,’ ID SAT

proposition)*
18 ;
19 logicDeclr : DECL ID ’[’ ID SAT proposition ’]’ ’;’;
20

21 propositions : proposition;
22

23 proposition : TOP #tt
24 | BOT #ff
25 | proposition (S|WS)? AND (S|WS)? proposition #conjunction
26 | proposition OR proposition #disjunction
27 | ’[’ID’]’ proposition #boxModality
28 | ’<’ID’>’ (S|WS)? proposition #diamondModality
29 | ’EE’’(’ proposition ’)’ #existsModality
30 | ’AA’’(’ proposition ’)’ #forallModality
31 | clockFormula (S|WS)? ’in’ (S|WS)? proposition #inModality
32 | clockConstraint #clockCC
33 | clockFormula ’+’ NATURAL
34 comparisonOp clockFormula ’+’ NATURAL #clockOperation
35 | rateConstraint #rateCC
36 ;
37

38 clockConstraint : clockFormula (S|WS)? comparisonOp (S|WS)? NATURAL
39 | clockConstraint (S|WS)? AND (S|WS)? clockConstraint
40 | TOP
41 ;
42

43 rateConstraint : ID QUOTE (S|WS)? comparisonOp (S|WS)? NATURAL #constantRC
44 | ID QUOTE (S|WS)? comparisonOp (S|WS)? ID QUOTE #simpleRC
45 | rateConstraint (S|WS)? AND (S|WS)? rateConstraint #

conjunctionRC
46 | TOP #trueRC
47 | BOT #falseRC
48 ;
49

50 clockFormula: ID (’^’ ID)?;
51 comparisonOp: ’>’ | ’<’ | ’>=’ | ’<=’ | EGA ;

Figure 8.23: Part of MIMETIC grammar
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1 lexer grammar MLvLexer;
2

3

4 fragment
5 DIGIT : [0-9] ;
6

7

8 QUIT : ’quit’ ;
9 AUTOM : ’Automata’ ;

10 DECL : ’Declaration’ ;
11 FSYNCH : ’Fsynchro’ ;
12 TABLE : ’Table’ ;
13 SYSTEM : ’System’ ;
14 INVAR : ’Invariants’ ;
15 CLOCKS : ’Clocks’ ;
16 LOCATIONS : ’Locations’ ;
17 TRANSITIONS : ’Transitions’ ;
18 ATOMIC : ’Atomic’ ;
19 PROPOSITIONS: ’Propositions’ ;
20 NULL : ’NULL’ ;
21 ACTIVITIES : ’Activity’ | ’Activities’;
22 IN : ’in’;
23 EXISTS : ’EE’;
24 FORALL : ’AA’;
25 AND : ’&&’ ;
26 OR : ’||’ ;
27 NOT : ’-’ ;
28 TOP : ’tt’;
29 BOT : ’ff’ ;
30 ACCOG : ’{’ ;
31 ACCOD : ’}’ ;
32 CROG : ’[’ ;
33 CROD : ’]’ ;
34 PARG : ’(’ ;
35 PARD : ’)’ ;
36 AFF : ’:’ ;
37 FSEP : ’;’ ;
38 SEP : ’,’ ;
39 POINT : ’.’ ;
40 STAR : ’*’ ;
41 FLECHE : ’->’;
42 APPROX : ’∼’ ;
43 SAT : ’|=’;
44 REC : ’?’ ;
45 SEN : ’!’ ;
46 PARAM : ’%’ ;
47 AROB : ’@’ ;
48 WITHOUT : ’\\’;
49 PLUS : ’+’ ;
50 EUNTIL : ’[@)’;
51 IMPL : ’=>’;
52 INFE : ’<=’;
53 INF : ’<’;
54 LESS : ’&lt;’;
55 SUPE : ’>=’;
56 SUP : ’>’;
57 EGA : ’==’;
58 SOUL : ’_’;
59 QUOTE : ’\’’;
60 NEGATIVE : ’-’DIGIT+;
61 NATURAL : DIGIT+;
62 WEDGE : ’^’ ;
63 ID : [a-zA-Z_]([a-zA-Z0-9_])* ;
64 //COMMENT : ’#’(.)*?’\n’ ;
65 WS : [ \t\n]+ ;
66 S : [ \t]+;

Figure 8.24: Part of MIMETIC Lexer
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results. Finally, in the seventh section, we have shown the strengths and weaknesses
of DMTA and DMLν.
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Part III

Postface
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“Most of the fundamental ideas of science are essentially simple, and may, as a
rule, be expressed in a language comprehensible to everyone.” Albert Einstein
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9
CONCLUSION AND FUTURE RESEARCH

DIRECTIONS

A DRTS may be characterized by multiple communicating components (or pro-
cesses) whose behavior depends on multiple timing constraints, and such compo-
nents may reside on multiple computers distributed over a communication network.
A DRTS may use synchronous clocks, i.e., all its components use the same clock,
or asynchronous clocks, i.e., all its components have their independent clocks that
are subject to clock drift [Cri96]. Synchronous and asynchronous models represent
two forms in the modeling and implementation of DRTS. However, the majority of
current implementations of DRTS combine the advantages of both models, which
is known as timed asynchronous models. [Cri96]. In such a DRTS, each component
has access to its local clock, which runs at a given rate of the global time. Com-
ponents communicate with each other by passing messages, which can take an
infinite amount of time to be transmitted [Cri96]. Formal verification techniques
have been used to verify the logical correctness of DRTS with respect to its specifica-
tion [Asp18].

In this thesis, we present three alternative semantics that can be used to model
and specify the distributed behavior of the components of a DRTS, and such com-
ponents have clocks that are not necessarily synchronized. We are also particularly
interested in the correct operation of these DRTS.

9.1 Summary of contributions

Our contributions to the thesis have been on the following points: undecidability,
perfect clock synchronization, complexity, single timestamps and large representa-
tion of states.
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(i) In Chapter 6 we have proposed:sAn alternative (real-time) semantics based on independent (distributed)
event clocks, allowing us to model and specify distributed and real-time
properties. We have defined DECA and proved that they are fully de-
cidable and that their language inclusion problem is PSPACE-complete,
as for classical automata. We also showed that the universal (timed)
languages of DECA are decidable and regular, in contrast to the universal
languages of icTA. [ABG+08].sA logic interpreted on DECA (called DECTL) to specify distributed and
real-time properties. We have shown that the problems of satisfiability,
validity, and model checking are decidable for DECTL, more precisely
PSPACE-complete, as for LTL.

(ii) In Chapter 7 we have proposed:sAn alternative semantics for capturing the execution of Multi-timed
Automata (MTA) [OAS17], based on multi-timed words running over
Multi-timed Labeled Transition Systems (MLTS). We extended the notion
of timed bisimulation to such structures and proposed an EXPTIME
algorithm for checking decidability.sA logic interpreted on MTA (called MLν), which can accept multi-timed
words and has an alternative semantics [OAS17]. MLν is an extension
of the modal logic Lν, tailored for alternative semantics over MTA. We
have shown that the model checking problem over MTA is ExPTIME-
complete, analogous to Lν.

(iii) In Chapter 8 we have proposed:sAn alternative semantics based on the concepts of independent clocks
and rate constraints. We extended the semantics of MTA to Multi-timed
Automata with Clocks Derivatives (DMTA). We also gave an EXPTIME
algorithm for deciding whether two DMTA are multi-timed bisimilar.sA logic interpreted on DMTA (called DMLν,) which can accept indepen-
dent clocks and rate constraints. DMLν is an extension of the modal
logic MLν, tailored for alternative semantics over DMTA. We have shown
that the model checking problem over DMTA is ExPTIME-complete,
analogous to MLν and Lν. We have shown the functionalities and details
related to the implementation of our algorithms.sThe design and implementation of three tools (MUTES, MULTI-TEMPO,
and MIMETIC) for simulating, modeling, and verifying DRTS. We have
also presented some experimental results with our MUTES tool.

9.2 Perspectives and future work

The work presented in this thesis does not solve all the problems we currently face
in the specification and verification of DRTS. This section The work presented in
this thesis does not solve all the problems we currently face in the specification and
verification of DRTS. This section presents our perspectives and future research
directions related to our three alternative semantics and tools.
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9.2.1 Distributed Event Clocks

We have proposed the basis of a theoretical framework for modeling and verify-
ing distributed and RTS by introducing independent (or distributed) event clocks,
inspired by [ABG+08]. However, it is possible to extend DECA and DECTL with
notions and representations from other formalisms:

(i) We can explore the possibility of extending DECA and DECTL with the notion
of probability, which will allow us to model probability transitions in DECA
and check whether DECTL properties hold for some acceptable probability.
In our Probabilistic DECA (PDECA), a transition is enabled as long as the
relevant guards and invariants hold, but the time to make an enabled transi-
tion depends on a certain probability distribution, as in Probabilistic Timed
Automata (PTA) [JLS08].

(ii) We can explore the possibility of extending the known expressive equivalence
of EventClockTL and MITL+Past [HRS98] to construct a distributed version
of MITL (DMITL) with independent modalities U

p
I ,S p

I .
(iii) We can explore the possibility of extending a new first-order monadic logic

with a metric quantifier ∃t ∈p ]t0, t0 +k[ . φ, ∃t ∈p ]t0 −k, t0[ . φ, where φ has
only the free variable t (see [HR06] for Quantitative Temporal Logic (QTL)).
We can show the expressiveness of Distributed Quantitative Temporal Logic
(DQTL).

(iv) We can explore the possibility of extending DECTL to allow not only the last φ
but also the last n φ [OLS10]. This logic can still be translated into DECA.

(v) We can explore the possibility of adding DECA automata operators [Wol83].
(vi) We can explore the possibility of adding second-order quantification to predi-

cates that are not subject to a real-time constraint.
(vii) We can explore the possibility of adding independent modalities U

p
I ,S p

I in a
linear µ calculus.

(viii) We can explore the possibility of extending DECA and DECTL with the notion
of rate constraints and clock derivatives.

(ix) We can use DECA and DECTL to model and verify industrial applications.
(x) We can explore the possibility of implementing a model checking tool based

on DECTL and DECA.

9.2.2 Multiple Independent Clocks

We have proposed a theoretical framework that allows timed bisimulation, Lν and
TA with independent clocks. However, it is possible to extend MTA and MLν with
notions and representations from other formalisms:

(i) In the current decade, research in process calculi has sought to reduce the
distance between formal models described by process calculi and DRTS.
In particular, features such as time, mobility, and nondeterminism [D’A99]
[OS06] [Sif01] [Ber04] [HR95] [SG11], have been introduced into the models.
Some important examples of such process calculus for describing systems
that require timing, mobility, and non-determinism are Timed CSP [SDJ+92]
[D’A99] [OS06], Timed CCS [Sif01] [HR95], Timed π-calculus (πt -calculus
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[Ber02] [Ber04] [SG11]), a widely studied formalism for describing and reason-
ing about DRTS and mobile processes. These formalisms are based on a com-
bination of synchronous communication, parallel composition, choice, and
real-time constructors. The characteristics of these calculi are that they consist
of autonomous processes that communicate and operate on an absolute time
reference that is available to all processes. Timed CSP [SDJ+92] [D’A99] [OS06],
Timed CCS [Sif01] [HR95] and Timed π-Calculus [SG11] use elements of TA,
such as clocks, timing constraints, which are usually more appropriate for
describing and verifying RTS. We can explore the possibility of extending the
π calculus with explicit notions of independent clocks. Our two contributions
would be

(a) To define the πmt -calculus, a π-calculus with distributed real-time con-
structors and non-deterministic decisions. Theπmt -calculus will capture
the idea of independent clocks, which is essential for compositionality
of processes.

(b) To define a relationship between πmt -calculus and MLν, which is essen-
tial for the specification and verification of distributed and RTS.

(ii) We can explore the possibility of adding a least fixpoint operator to MLν.
(iii) We can explore the satisfiability of MLν by exploiting decidability results on

Recursive Weighted Logic [LM14b], which has similar properties.
(iv) We would like to know what distributed real-time properties can be preserved

on MLν.
(v) We can explore the possibility of parallelizing our multi-timed bisimulation

algorithm.
(vi) We can explore the possibility of defining weak multi-timed bisimulation.

We can also propose a multi-timed zone-based algorithm for checking weak
multi-timed bisimulation.

(vii) We can explore the possibility of relating our approach to other formalisms
mentioned in the introduction, such as HIOA, DRTL, APTL, Time Petri nets
[GYH+22].

9.2.3 Distributed Clock Derivatives

We have proposed a theoretical framework that allows multi-timed bisimulation,
MLν and MTA with clock rates and clock derivatives. However, it is possible to
extend MTA and MLν with notions and representations from other formalisms:

(i) We can explore the possibility of relating DMTA to Hybrid Automata (HA)
[Ras05].

(ii) We can explore the expressiveness of DMTA with respect to TA, icTA.
(iii) We can use DMTA and MLν to model and verify industrial applications.
(iv) We would like to know what distributed real-time properties can be preserved

on MLν.
(v) We can add to our model checking tool MIMETIC the least and greatest fix-

point operators.
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(vi) we can improve our MUTES and MIMETIC tools to investigate more general
problems of verification, like performance evaluation.

(vii) We can explore the possibility of working on the implementability of DMTA
to incorporate the platform information by explicitly modeling the execution
platform [AT05].
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ω-AUTOMATA

In this section, we give the omitted definitions in Section 4.2.

A.1 Determinization and Complementation ofω-automata

Complementing ω automata is a very complex problem. The reason is that the
known complementation algorithms require deterministic automata, but we have
already seen that deterministic Büchi automata (DBA) are not as expressive as non-
deterministic ones. That is, for a given Non-Deterministic Büchi Automata (NBA),
there may not even be a deterministic automaton, and thus no way to build the
complementary automaton in a relatively easy way.

A.1.1 Determinization

The determinization operation consists in the transformation of a NBA into a DBA.
However, any NBA cannot be determinized into an automaton with Büchi accep-
tance conditions.

Example 45. Given a NBA A that recognizes an ω-word (a +b)∗·bω. This notation
means that a must be recognized only finitely often, but b infinitely often. This
automaton is represented by Figure A.1

Now suppose that we have a DBA B = ({a,b},Q,→DB A , {q0},F ) which recognizes
the same language as A , then: u0 = bω, then u0 ∈ L (A ) and there exists a finite
prefix v0 of u0 that brings B to F , u1 = v0abω, then u1 ∈ L (A ) and there exists a
finite prefix v0av1 of u1 that brings B to F , · · · , un = vn−1abω, then un ∈L (A ) and
there exists a finite prefix v0av1a · · ·avn of un that brings B to F . Since the number
of states Q is finite, there exists i and j , 0 ≤ i < j such as words v0av1a · · ·avi and
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     s0   s1

a, b 

b 

b 

Figure A.1: A NBA.

v0av1a · · ·av j bring to the same state. Then m = v0av1a · · ·avi (a · · ·v j )ω is accepted
by B. But since m has an infinity of a, it cannot be recognized by A .

This example implies that to determinize a BA, the Büchi class cannot be used.

A.1.1.1 Deterministic Rabin Automata

Definition 111. A deterministic Rabin automaton (DRA) is a tuple A = (Q,Σ,→DR A

, q0,F) such thatsQ is the finite set of locations.sΣ is the finite alphabet, in our case Σ = 2P.s→DR A : Q × Σ→ 2Q is the transition relation.sq0 ∈ Q is the initial location,sF = {(L1,U1), . . . , (Lr ,Ur )|Li ,Ui ⊆Q} is the Rabin acceptance condition.

Definition 112. A run ρ of a Rabin automaton A with acceptance condition F =
{(L1,U1), . . . , (Lr ,Ur )} is accepting iff there exists an i ∈ {1, . . . ,r } such that i n f (ρ) ∩ Li

̸= ; and i n f (ρ) ∩Ui = ;.

In other words, an acceptance pair (Li ,Ui ) is accepting when there is at least one
location in Li that is visited infinitely often in ρ and after some point no location in
Ui is visited any more in ρ. If at least one of the r pairs (Li ,Ui ) is accepting, then the
whole automata is accepting.

A.1.1.2 Deterministic Muller Automata

Definition 113. A deterministic Muller automaton (DMA) is a tuple A = (Q,Σ,→DM A

, q0,F) such thatsQ is the finite set of locations.sΣ is the finite alphabet, in our case Σ = 2P.s→DM A : Q × Σ→ 2Q is the transition relation.sq0 ∈ Q is the initial location,sF ⊆ 2Q is the Muller acceptance condition.

Definition 114. A run ρ of Muller automaton A is accepting if the accepting set
is included into the infinity set of visited locations. The formal definition for this
acceptance condition is: i n f (ρ) ∈ F , with F ⊆ 2Q , the set of accepting states.
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Safra’s construction [Saf89] produces a Muller or Rabin automaton from a NBA.
For a NBA with n states, it creates a Deterministic Büchi Automata (DBA) with
2O(nlog n) states, which is optimal for Rabin automata.

A.1.2 Complementation

Complementation for deterministic ω automata is a simple operation, since it only
requires switching to the dual acceptance condition (Muller, Rabin, and Streett),
but for nondeterministic ones this operation is more complicated. Safra [Saf89]
proposed a construction by determinizing the automaton, which produces a Büchi
automaton with 2O(nlog n) states.
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However, there are also two other abstractions that can be found in literature,
namely aE xtr a+

M
(Z ) and aE xtr a+

LU
(Z ) where for a clock zone Z , Z ⊆ aE xtr aM (Z )

⊆ aE xtr a+
M

(Z ) and Z ⊆ aE xtr aLU (Z ) ⊆ aE xtr a+
LU

(Z )) [BBLP04] [BBLP06]. The im-
provement of these two abstractions presented above is that if a whole clock zone is
above the maximal bound for some clock x, then diagonal constraints involving x
can be removed of the clock zones, even if they are not themselves above the maxi-
mum bound. These two abstractions presented above can also be defined in terms of
extrapolation operators on DBMs, denoted by E xtr a+

M (D) and E xtr a+
LU (D) where

D is the DBM in canonical form which represents the clock zone Z . Formally, the
extrapolation operator D′ = E xtr a+

M (D) with D′ = (d′
i , j )0≤i , j≤n is defined as follows:

d′
i , j =



(∞,<) i f di , j > M(xi )
(∞,<) i f −d0,i > M(xi )
(∞,<) i f −d0, j > M(x j ), i ̸= 0
(−M(x j ),<) i f −d0, j > M(x j ), i = 0
(di , j ,≺i , j ) other wi se

Similarly, the extrapolation operator D′ = E xtr a+
LU (D) with D′ = (d′

i , j )0≤i , j≤n is
defined as follows:

d′
i , j =



(∞,<) i f di , j > L(xi )
(∞,<) i f −d0,i > L(xi )
(∞,<) i f −d0, j >U (x j ), i ̸= 0
(−U (x j ),<) i f −d0, j >U (x j ), i = 0
(di , j ,≺i , j ) other wi se

Algorithms B.1 and B.2 describe the E xtr a+
M and E xtr a+

LU operations on a DBM
[BBFL03]. The algorithm B.1 works as follows: it repeatedly removes all upper bounds
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1 Input: A DBM D = (di , j )0≤i , j≤n and M(xi ) the maximal bound, where
xi0≤i<n ∈ X.

2 Output: A DBM D′ = (di , j )0≤i , j≤n.
3 DBM D ′;
4 DBM ExtraMPlusOperator(DBM D, List const M) {
5 int i, j;
6 for(i=0; i<D.size; i++){
7 for(j=0; j<D.size; j++){
8 if(i ̸= j && (D[i,j] > (M(xi, <)) || D[0,i] <
9 (−M(xi, <)) || D[0,j] < (−M(x j, <))) && i ̸= 0) {

10 D′[i,j] = (∞,<);
11 }
12 else if(D[i,j] < (−M(x j), <) && i = 0) {
13 D′[i,j] = (−M(x j), <);
14 }
15 }
16 }
17 return D′;
18 }

Algorithm B.1: E xtr a+
M Algorithm

1 Input: A DBM D = (di , j )0≤i , j≤n, L(xi ) the maximal lower bound (and
U (xi ) the maximal upper bound), where xi0≤i<n ∈ X.

2 Output: A DBM D′ = (di , j )0≤i , j≤n.
3 DBM D′;
4 DBM ExtraLUPlusOperator(DBM D, List const L, List const U) {
5 int i, j;
6 for(i=0; i<D.size; i++){
7 for(j=0; j<D.size; j++) {
8 if(i ̸= j && (D[i,j] > (L(xi, <)) || D[0,i] <
9 (−L(x(i ), <)) || D[0,j] < (−U(x j, <))) && i ̸= 0) {

10 D′[i,j] = (∞,<);
11 }
12 else if(D[i,j] < (−U(x j), <) && i = 0) {
13 D′[i,j] = (−U(x j), <);
14 }
15 }
16 }
17 return D′;
18 }

Algorithm B.2: E xtr a+
LU Algorithm
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higher than M(xi ) with xi ∈ X and lowers all lower bounds higher than M(xi ) with
xi ∈ X down to the M(xi ). The algorithm B.2 works as follows: it repeatedly removes
all upper bounds higher than U (xi ) with xi ∈ X and lowers all lower bounds higher
than L(xi ) with xi ∈ X down to the L(xi ). Note that there operators do not preserve
the canonical form of the DBM.

B.0.1 Time-abstract Bisimulation

Time-abstract bisimulation has been considered in [AD94], and is one of the fun-
damental concepts of region equivalence [AD94]. Time-abstract bisimulations are
equivalences that abstract the quantitative aspects of time [TY01].

Definition 115 (Time-Abstract Bisimulation [TY01]). Let D1 and D2 be two TLTS
over the same set of actions Σ. Let QD1 (resp., QD2 ) be the set of states of D1 (resp., D2).
A timed-abstract bisimulation over TLTS D1, D2 is a binary relation R ⊆QD1 ×QD2

such that the following holds: if qD1
R qD2

then:

(i) Discrete transition: For every a ∈ Σ and for every qD1

a−→D1 q′
D1

, there exists a

matching discrete transition qD2

a−→D2 q′
D2

such that q′
D1

Rq′
D2

and vice versa,

(ii) Delay transition: For every d ∈ R≥0 and for every qD1

d−→D1 q′
D1

, there exists a

matching delay transition qD2

d ′
−→D2 q′

D2
such that q′

D1
Rq′

D2
and vice versa.

Two states qD1
and qD2

are timed-abstract bisimilar, written qD1
≈ma qD2

, iff there is
a timed-abstract bisimulation R such that qD1

R qD2
. D1 and D2 are timed-abstract

bisimilar, written D1 ≈ma D2, if there exists a timed bisimulation relation R over D1

and D2 containing the pair of initial states. Furthermore, for all qD1
R qD2

, if qD1
∈

QF
D1

then qD2
∈ QF

D2
.
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DERIVATIVE MULTI-TIMED AUTOMATA

In this section, we give the omitted proof in Chapter 8.

C.1 Parallel Composition of DMTA

Now, we need to prove the parallel composition at the semantics for DMTA (e.g.,
MLTS(A ,τ) and MLTS(B,τ)).

Theorem 68. Let A and B be two DMTA, then for any τ ∈ Rates, MLTS(A ,τ) ∥
MLTS(B,τ) = MLTS((A ∥B),τ).

Proof. The proof consists in showing that each transition of the MLTS(A ,τ) ∥
MLTS(B,τ) can be found in MLTS((A ∥B),τ) and vice versa. Let R = { (((sA , sB),
νA ∥B , tA ∥B), ((sA ,νA , tA ), (sB ,νB , tB))) | νA ∥B(x) = νA (x) ⊎ νB(x) for x ∈ XA ⊎
XB and tA ∥B = tA = tB }. Based on the MLTS and DMTA parallel composition,
there exists two types of transitions:

(i) Discrete transition: Let qA = (sA ,νA , tA ) and qB = (sB ,νB , tB) be two states
of MLTS(A ,τ) and MLTS(B,τ) respectively. A transition ((sA ,νA , tA ), (sB ,νB ,
tB))

a−→ml t s ((s′
A

,ν′
A

, t ′
A

), (s′
B

,ν′
B

, t ′
B

)) exists on MLTS(A ,τ) ∥ MLTS(B,τ) iff

the transition ((sA , sB), νA ∥B , tA ∥B)
a−→ml t s ((s′

A
, s′

B
), ν′

A ∥B , t ′
A ∥B)) exists on

MLTS((A ,τ) ∥ (B,τ)), with νA ∥B and ν′
A ∥B defined as νA ∥B(x) = νA (x) ⊎

νB(x) for x ∈ XA ⊎ XB , ν′
A ∥B = νA ∥B[(YA ⊎YB) ← 0]:

(a) For a ∈ ΣA ∩ ΣB : Let ((sA ,νA , tA ), (sB ,νB , tB))
a−→ml t s ((s′

A
,ν′

A
, t ′

A
),

(s′
B

, ν′
B

, t ′
B

)) be a transition of MLTS(A ,τ) ∥ MLTS(B,τ). By Defini-
tion 78 (a), we have that the transition ((sA ,νA , tA ), (sB ,νB , tB))

a−→ml t s

((s′
A

, ν′
A

, t ′
A

), (s′
B

,ν′
B

, t ′
B

)) can not exist iff unless (sA ,νA , tA )
a−→ml t s

(s′
A

,ν′
A

, t ′
A

) in MLTS(A ,τ) and (sB ,νB , tB)
a−→ml t s (s′

B
,ν′

B
, t ′

B
) in MLTS
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(B,τ) both exist and the actions are synchronized. Therefore, since
the two transitions on the MLTS, then we also know that there are

two transitions on the corresponding DMTA, sA
a,φA ,YA−−−−−−→dmta s′

A
and

sB
a,φB ,YB−−−−−−→dmta s′

B
. Additionally, we have the clock valuations νA and

ν′
A

(and νB and ν′
B

respectively) of each state defined respectively as
ν′

A
= νA [YA ← 0], νA |= Inv(s′

A
) and νA |= R(s′

A
) and similarly in

order for νB and ν′
B

. Hence, the composition of sA
a,φA ,YA−−−−−−→dmta s′

A

and sB
a,φB ,YB−−−−−−→dmta s′

B
at the DMTA level is also based on the dis-

crete transition of the DMTA composition. This lead to the transition
(sA , sB)

a−→dmta (s
′
A

, s
′
B

). The clock valuation νA (and νB) of each DMTA
A (and B) is projected on the result of their composition. By Definition
78, we have that the result of the composition of MLTS there exists three
kinds of transitions and the clock valuation νA (and νB) is is known
for all kinds of transitions at the result of composition of DMTA, then
we can generalize this fact to every transition →ml t s on the correspond-
ing MLTS. The clock ν′

A
(and ν′

B
) is projected into the synchronization

of the composition of the DMTA. Then, the clock valuation that were
reset by νA and νB will be reset by νA ∥B . Based on the composition
of the DMTA, we know that the discrete transition that are enabled
by (sA , s′

A
) (and (sB , s′

B
)) will be enabled by (sA , s′

A
), (sB , s′

B
). This

leads to ν′
A ∥B = νA ∥B[(YA ⊎YB) ← 0]. Therefore, given the transition

(sA , sB)
a−→dmta (s

′
A

, s
′
B

) and clock valuations νA ∥B and ν′
A ∥B then, we

can obtain ((sA , sB),νA ∥B , tA ∥B),
a−→mlts ((s

′
A

, s
′
B

),ν′
A ∥B , t ′

A ∥B).

Since the three cases hold we conclude that ((qA ,νA , tA ), (qB ,νB , tB))
a−→mlts

((q
′
A

,ν
′
A

, t
′
A

), (q
′
B

,ν
′
B

, t
′
B

)) implies ((qA , qB), νA ∥B , tA ∥B)
a−→mlts ((q

′
A

, q
′
B

),

ν′
A ∥B , t ′

A ∥B) and ((qA , qB),νA ∥B , tA ∥B)
a−→mlts ((q

′
A

, q
′
B

),ν′
A ∥B , t ′

A ∥B) im-

plies ((qA , νA , tA ), (qB ,νB , tB))
a−→mlts ((q

′
A

,ν
′
A

, t
′
A

), (q
′
B

,ν
′
B

, t
′
B

)).
(ii) Delay transition: Let qA = (sA ,νA , tA ) and qB = (sB ,νB , tB) be two states of

MLTS(A ,τ) and MLTS(B,τ) respectively. A transition ((sA ,νA , tA ), (sB ,νB ,

tB))
d⃗−→ml t s ((s′

A
,ν′

A
, t ′

A
), (s′

B
,ν′

B
, t ′

B
)) exists on MLTS (A ,τ) ∥ MLTS(B,τ) iff

the transition ((sA , sB), νA ∥B , tA ∥B)
d⃗−→ml t s ((s′

A
, s′

B
),ν′

A ∥B , t ′
A ∥B)) exists on

MLTS((A ,τ) ∥ (B,τ)), with νA ∥B and ν′
A ∥B defined as νA ∥B(x) = νA (x) ⊎

νB(x) for x ∈ XA ⊎ XB , ν′
A ∥B = νA ∥B[(YA ⊎YB) ← 0]:

(a) Let ((sA ,νA , tA ), (sB ,νB , tB))
d⃗−→ml t s ((s′

A
,ν′

A
, t ′

A
), (s′

B
, ν′

B
, t ′

B
)) be a

transition of MLTS (A ,τ) ∥ MLTS(B,τ). By Definition 78 (ii), we have

that the transition ((sA ,νA , tA ), (sB ,νB , tB))
d⃗−→ml t s ((s′

A
, ν′

A
, t ′

A
), (s′

B
,

ν′
B

, t ′
B

)) can not exist iff unless (sA ,νA , tA )
d⃗−→ml t s (s′

A
,ν′

A
, t ′

A
) in MLTS

(A ,τ) and (sB ,νB , tB)
d⃗−→ml t s (s′

B
,ν′

B
, t ′

B
) in MLTS(B,τ) both exist. There-

fore, since the two transitions on the MLTS, then we also know that
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there are two transitions on the corresponding DMTA qA
d⃗−→dmta q

′
A

and qB
d⃗−→mta q

′
B

where qA = (sA ,νA , tA ) and qB = (sB ,νB , tB). Ad-
ditionally, we have the clock valuations νA and ν′

A
(and νB and ν′

B

respectively) of each state defined respectively as d⃗ = τ(t
′
A

)−τ(tA ) and

∀t ∈ [tA , t
′
A

] : ν+ (τ(t)−τ(tA )) |= Inv(sA ) and ν+ (τ(t)−τ(tA )) |= R(sA )

and similarly in order for νB and and ν
′
B

. Hence, the composition of

sA
d⃗−→dmta s

′
A

and sB
d⃗−→dmta s

′
B

at the DMTA level is also based on the
delay transition of the DMTA composition. This lead to the transition

(sA , sB)
d⃗−→dmta (s

′
A

, s
′
B

). The clock valuation νA ∥B of each DMTA is
projected on the result of their composition. Then, the clock valua-
tion that were reset by νA and νB will be reset by νA ∥B . Based on the
composition of the DMTA, we know that the delay transition that are
enabled by (sA , s

′
A

) and (sB , s
′
B

) will be enabled by (sA , sB), (s
′
A

, s
′
B

).

Therefore, given the transition (sA , sB)
d⃗−→dmta (s

′
A

, s
′
B

) and clock valua-

tions νA ∥B and ν′
A ∥B then, we can obtain ((sA , sB),νA ∥B , tA ∥B),

d⃗−→mlts

((s
′
A

, s
′
B

),ν′
A ∥B , t ′

A ∥B).

(b) Let ((sA , sB), νA ∥B , tA ∥B)
d⃗−→ml t s ((s′

A
, s′

B
),ν′

A ∥B , t ′
A ∥B)) be a transition

of MLTS(A ∥ B,τ). By Definition 78 (ii), we have that the transition

(qA , qB)
d⃗−→mlts (q

′
A

, q
′
B

) and the clock valuation νA ∥B and ν′
A ∥B . There-

fore, since the two transitions on the composition of A and B, then
by the discrete transition of the composition of the two DMTA, we

know that qA
d⃗−→dmta q

′
A

and qB
d⃗−→dmta q

′
B

both transition exist and
qA = (sA ,νA , tA ) and qB = (sB ,νB , tB). Based on the composition of
the clock valuation ν′

A ∥B is defined respectively as d⃗ = τ(t
′
A ∥B)−τ(tA ∥B)

and ∀t ∈ [tA ∥B , t
′
A ∥B] : νA ∥B + (τ(t)−τ(tA ∥B)) |= InvA (sA ) ∧ InvB(sB)

and (τ, t) |= RA (sA ) ∧ RB(sB) and similarly in order for νB and ν
′
B

.
Hence, the two transitions at the DMTA level along with the clock valua-

tion of νA ∥B and ν′
A ∥B , is applied which leads into (sA ,νA , tA )

d⃗−→dmta

(s
′
A

,ν
′
A

, t
′
A

) of MLTS((A ,τ) and (sB ,νB , tB)
d⃗−→ta (s

′
B

,ν
′
B

, t
′
B

) of MLTS
((B,τ). Now the composition of these two transitions at the MLTS
level is also based on the of discrete transition the DMTA composi-

tion. This leads into the transition ((sA ,νA , tA ), (sB ,νB , tB))
d⃗−→mlts

((s
′
A

,ν
′
A

, t
′
A

), (s
′
B

, ν
′
B

, t
′
B

)) which happens to be our awaited conclu-
sion.

Since the two implications hold we conclude that:sDiscrete transition: ((qA ,νA , tA ), (qB ,νB , tB))
a−→mlts ((q

′
A

,ν
′
A

, t
′
A

), (q
′
B

,ν
′
B

,

t
′
B

)) implies ((qA , qB),νA ∥B , tA ∥B)
a−→mlts ((q

′
A

, q
′
B

), ν′
A ∥B , t ′

A ∥B) and ((qA ,

qB),νA ∥B , tA ∥B)
a−→mlts ((q

′
A

, q
′
B

),ν′
A ∥B , t ′

A ∥B) implies ((qA ,νA , tA ), (qB ,
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νB , tB))
a−→mlts ((q

′
A

, ν
′
A

, t
′
A

), (q
′
B

, ν
′
B

, t
′
B

)).sDelay transition: ((qA ,νA , tA ), (qB ,νB , tB))
d⃗−→mlts ((q

′
A

,ν
′
A

, t
′
A

), (q
′
B

,ν
′
B

, t
′
B

))

implies ((qA , qB),νA ∥B , tA ∥B)
d⃗−→mlts ((q

′
A

, q
′
B

), ν′
A ∥B , t ′

A ∥B) and ((qA , qB),

νA ∥B , tA ∥B)
d⃗−→mlts ((q

′
A

, q
′
B

),ν′
A ∥B , t ′

A ∥B) implies ((qA ,νA , tA ), (qB ,νB , tB))

d⃗−→mlts ((q
′
A

, ν
′
A

, t
′
A

), (q
′
B

, ν
′
B

, t
′
B

)).
Since (1), (2) and (3), we conclude that for any τ∈Rates, MLTS(A ,τ) ∥MLTS(B,τ)

≈ MLTS(A ∥B,τ).

proposition 31. Let Z be a clock zones. Then, Z ↑ψ and Z ↓ψ are also clock zones.

Proof. Let Z be zones, then we need to prove the following operations are clock
zones:

(i) Z ↑ψ,
(ii) Z ↓ψ,
(i) Let Z be a clock zone and X be a set of clocks. We are going to demonstrate

the fifth case (5) by showing that if Z is a clock zone, then a clock valuation
ν′ ∈ Z ↑ψ, if there exists a tuple d⃗ ∈RPr oc

≥0 , a tuple τ ∈ Rates, a rate constraint

ψ ∈Ψ(X ), t , t ′ ≥ 0, t ≤ t ′ with d⃗ = τ(t ′)−τ(t ) such that if (τ, t ) |=ψ, then there
exists a clock valuation ν ∈ Z such that ν+ d⃗ = ν′. Thus, Z ↑ψ is a clock
zone. In order to demonstrate this, we need to solving the following system of
inequalities: 

−c0,i −ν(xi ) ∼ d⃗ f or al l xi ∈ X

d⃗ ∼ ci ,0 −ν(xi ) f or al l xi ∈ X

ν(xi + d⃗)−ν(x j + d⃗) ∼ ci , j f or al l xi , x j ∈ X

d⃗ ≥ 0

(a) Let xi be an independent clock, such that xi ∈ X . For all ν ∈ Z , we know
that if -c0,i - ν(xi ) ∼ d⃗ then -c0,i ∼ ν′(xi ) from which we can deduce
that the inequality does not force d⃗ ∈ RPr oc

≥0 to be negative. Then the
set of solutions of the inequality is not empty (i.e., the inequality is
pairwise coherent). This leads us to that for all xi ∈ X , exists t , t ′ ≥ 0,
t ≤ t ′, such that, (τ, t) |= ẋi ∼ 1 iff τxi is derivable at t and dτxi /d t(t) ∼
1. Let d⃗ ∈ RPr oc

≥0 be such solution. We let ν be the valuation such that

ν(xi ) = ν′(xi )− d⃗ for all xi ∈ X . Such a valuation exists, and is in Z by
construction. Then, since (τ, t ) |= ẋi ∼ 1 and ν′(xi ) = ν(xi )+ d⃗ with ν ∈ Z

and some d⃗ ∈ RPr oc
≥0 and t ∈ R≥0 we can deduce that ν′ ∈ Z ↑ψ and Z ↑ψ

is a clock zone.

(b) Let xi be an independent clock such that xi ∈ X . For all ν ∈ Z , we
know that if d⃗ ∼ ci ,0 −ν(xi ) then ν′(xi ) ∼ ci ,0 from which we can deduce
that the inequality does not force d⃗ ∈ RPr oc

≥0 to be negative. Then the
set of solutions of the inequality is not empty (i.e., the inequality is
pairwise coherent). This leads us to that for all xi ∈ X , exists t , t ′ ≥ 0,
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t ≤ t ′, such that, (τ, t) |= ẋi ∼ 1 iff τxi is derivable at t and dτxi /d t(t) ∼
1. Let d⃗ ∈ RPr oc

≥0 be such solution. We let ν be the valuation such that

ν(xi ) = ν′(xi )− d⃗ for all xi ∈ X . Such a valuation exists, and is in Z by
construction. Then, since (τ, t ) |= ẋi ∼ 1 and ν′(xi ) = ν(xi )+ d⃗ with ν ∈ Z

and some d⃗ ∈ RPr oc
≥0 and t ∈ R≥0 we can deduce that ν′ ∈ Z ↑ψ and Z ↑ψ

is a clock zone.

(c) Let xi , x j be two independent clocks such that xi , x j ∈ X . For all ν
∈ Z , we know that (ν(xi ) + d⃗) - (ν(x j ) + d⃗) ∼ ci , j , but, due to the fact
that the clocks evolve at rates that can be independent of each other,
clock differences can change over time and the two occurrences of d⃗
do not cancel each other out, then we can deduce that the inequality
ν′(xi ) - ν′(x j ) ∼ ci , j is already in the appropriate form. Then the set of
solutions of the inequality is not empty (i.e., the inequality is pairwise
coherent). This leads us to that for all xi , x j ∈ X , exists t , t ′ ≥ 0, t ≤ t ′,
such that (τ, t) |= ẋi ∼ ẋ j iff τxi is derivable at t and τx j is derivable at t

and dτxi /d t (t ) ∼ dτx j /d t (t ). Let d⃗ ∈ RPr oc
≥0 be such solution. We let ν be

the valuation such that ν(xi ) = ν′(xi )− d⃗ and ν(x j ) = ν′(x j )− d⃗ for all xi ,
x j ∈ X . Such a valuation exists, and is in Z by construction. Then, since
(τ, t) |= ẋi ∼ ẋ j and ν′(xi ) = ν(xi )+ d⃗ and ν′(x j ) = ν(x j )+ d⃗ with ν ∈ Z

and some d⃗ ∈ RX
≥0 and t ∈ R≥0 we can deduce that ν′ ∈ Z ↑ψ and Z ↑ψ is

a clock zone.

(ii) Z ↓ψ. The argument is symmetric to (5).

Definition 116 (Discrete Successor). Let q = (s,Z ) be a zone and e=(s, a,φ,Y , s′) ∈
→dmt a be a transition of A , then post(Z ,e)={ν′ | ∃ν ∈Z ,∃τ ∈ Rates, (s,ν)

e−→ml t s(A ,τ)

(s′,ν′)} is the set of valuations that q can reach by taking the transition e.

Intuitively, the zone (s′,post(Z ,e)) describes the discrete successor of the zone
(s,Z ) under the transition e.

Definition 117 (Discrete Predecessor). Let q = (s′,Z ′) be a zone and e=(s, a,φ,Y ,
s′) ∈ →dmt a be a transition of A , then pred(Z ′,e)={ν | ∃ν′ ∈ Z ′,∃τ ∈ Rates, (s,ν)
e−→ml t s(A ,τ) (s′,ν′)} is the set of valuations that q can reach by executing the transition

e.

The zone (s,pred(Z ′,e)) ↓ψ describes the discrete predecessor of the zone (s′,Z ′)
under the transition e. The set pred(Z ′,e) ↑ψ can be computed using the operations
inverse clock reset and intersection on clock zones as follows:

pred(Z ′,e) ↓ψ= ((Z ′ ↑Y ∩ φ)∩ Inv(s′)).

The set post(Z ,e) ↑ψ can be obtained using the operations clock reset and the
standard intersection on clock zones as follows:

post(Z ,e) ↑ψ= ((Z ∩ (φ∩ Inv(s′))) ↓Y ∩ Inv(s′)).
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The sets post(Z ,e) ↑ψ and pred(Z ′,e) are thus also clock zones, since they are a
combination of zones preserving operators from Lemma 16.

proposition 32. Let A be a DMTA, e = (s, a,φ,Y , s′) ∈ →dmt a be a transition of a
DMTA A and (s,Z ) be a zone, then post(Z ,e) ↑ψ = ((Z ∩ (φ∩ Inv(s))) ↓X ∩ Inv(s′))
and pred(Z ′,e) ↓ψ = ((Z ′ ↑X ∩ φ)∩ Inv(s)).

Proof. Let (s,Z ) be a zone and e = (s, a,φ,Y , s′) ∈→dmt a be a transition of an DMTA
A , then we need to prove the following equalities:

(i) post(Z ,e) ↑ψ = ((Z ∩ (φ∩ Inv(s))) ↓Y ∩ Inv(s′)),
(ii) pred(Z ′,e) ↓ψ = ((Z ′ ↑Y ∩ φ)∩ Inv(s)).
(i) Let Z be a convex clock zone and Y be a set of clocks. We are going to prove the

third case (3) by showing that every clock valuation that is in post(Z ,e) ↑ψ is
also in ((Z∩(φ∩Inv(s)) ↓Y ∩ Inv(s′)) and vice versa (i.e., post(Z ,e) ↑ψ ⊆ ((Z∩
(φ∩ Inv(s)) ↓Y ∩ Inv(s′)) and ((Z ∩ (φ∩ Inv(s)) ↓Y ∩ Inv(s′)) ⊆ post(Z ,e) ↑ψ.

(a) post(Z ,e) ↑ψ ⊆ ((Z ∩ (φ∩ Inv(s))) ↓Y ∩ Inv(s′)): Consider an arbitrary
clock valuation ν′. Then, we assume ν′ ∈ post(Z ,e) ↑ψ and show ν′ ∈
((Z ∩ (φ∩ Inv(s)) ↓Y ∩ Inv(s′)). Since ν′ ∈ post(Z ,e) ↑ψ, then, ∃(τ, t) |=
R(s′) and exists t ∈ R≥0 such that (s,ν, t)

e−→ml t s (s′,ν′, t). By Definition
98(1) there exists a discrete transition between s and s′ with ν |= φ and
ν′ = ν[Y ← 0] and ν′ |= Inv(s′) and (τ, t) |= R(s′). By Definition 43(3)
it follows that (τ, t) |= R(s′). Therefore, by intersection of zones and
Definition 103(1), we have that ν′ ∈ (Z ∩ (φ ∩ Inv(s)) ↓Y and ν′ ∈ Inv(s′)
then ν′ ∈ (Z ∩(φ∩ Inv(s)) ↓Y ∩ ν′ ∈ Inv(s′). Thus, we have post(Z ,e) ↑ψ
⊆ ((Z ∩ (φ∩ Inv(s)) ↓Y ∩ Inv(s′)) is a zone.

(b) ((Z ∩ (φ∩ Inv(s))) ↓Y ∩ Inv(s′)) ⊆ post(Z ,e) ↑ψ: Consider an arbitrary
clock valuation ν. ν′ ∈ ((Z ∩ (φ∩ Inv(s)) ↓Y ∩ Inv(s′)) and show ν′

∈ post(Z ,e) ↑ψ. Since ν′ ∈ ((Z ∩ (φ∩ Inv(s)) ↓Y ∩ Inv(s′)), then, ν′ ∈
((Z ∩ (φ∩ Inv(s)) ↓Y and ν′ ∈ Inv(s′). By Definition 103(3) and conjunc-
tion of zones, we have that ν′ ∈ ((Z ∩ (φ∩ Inv(s)) and ν′ ∈ Inv(s′), then
ν′ ∈ (Z ∩(φ∩Inv(s))) ∩ Inv(s′) ⊆ post(Z ,e) ↑ψ. This is exactly the defini-
tion of inclusion of zones ν ∈ post(Z ,e) ↑ψ. Thus, we have post(Z ,e) ↑ψ
⊆ ((Z ∩ (φ∩ Inv(s)) ↓X ∩ Inv(s′)) is a zone.

The proof of these zones establishes the desired equality post(Z ,e) ↑ψ =
((Z ∩ (φ∩ Inv(s)) ↓X ∩ Inv(s′)).

(ii) pred(Z ′,e) ↓ψ = ((Z ′ ↑Y ∩ φ)∩ Inv(s)). The argument is symmetric to (3).

proposition 33 (Completeness). Let θ = (s0,ν0, t0)
d⃗0,a0−−−→ (s1,ν1, t1)

d⃗1,a1−−−→ (s2,ν2, t2) . . .
d⃗n−1,an−1−−−−−−−→ (sn ,νn , tn) be an initial (but not necessarily accepting) run of MLTS(A ,τ),
for some τ ∈ Rates. Then, for any state (si ,νi , ti ), where 0 ≤ i ≤ n, appearing in this
run, there exists a symbolic zone (si ,Zi ) added in Q such that νi ∈ Zi .

Proof. We proceed by induction on the length of the run leading to (si ,νi , ti ).
Base case: We know that ν0 ∈ Z0. The zone (s0,E xtr a+

LU(s0)
(Z0)) is added to D and
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Q in line 9.
Induction case: Assume that for all 0 ≤ i ≤ m, there exists (si ,Zi ) in Q such that νi

∈ Zi . We will now show that there exists (sm+1,Zm+1) in Q such that νm+1 ∈ Zm+1.
By the induction hypothesis, we have (sm ,Zm) in Q such that νm ∈ Zm . Consider

the transition (sm ,νm , tm)
d⃗m ,am−−−−→ (sm+1,νm+1, tm+1) of the run θ and let em be its

transition. As (sm ,Zm) is in Q, the delay transition
ϵ−→ZG has been considered in

the line 25 and represents dm > 0. The other case d⃗m = 0 means that ν′ = ν and

is thus already included in Zm . Let ν
′
m = νm + d⃗m . Then, since (sm ,νm , tm)

dm−−→
(sm ,ν

′
m , t

′
m) is a delay transition of the MLTS(A ,τ), we have the time successor

(i.e., Zm = Z2 ← E xtr a+
LU ((Z1 ↑R(s))∧ I (s))) and thus at line 27 we have added Z

′
m

= Z3 or Z
′
m = Z2 at line 30, but in any case ν

′
m ∈ Z2 ⊆ E xtr a+

LU (Z2) ⊆ Z3. Let

(sm ,Z
′
m)

em−−→ZG (sm+1,Zm+1) be the discrete transition in the zone graph in lines 14

and 17. Let (sm ,Z
′
m)

em−−→ZG (sm+1,Zm+1) be the transition in the zone graph in lines
26 and 27. By definition of the symbolic transition, νm+1 ∈ Zm+1. If (sm+1,Zm+1) is
in Q, we are done. The only other case when (sm+1,Zm+1) is not in Q is when there
exists (sm+1,Z

′
m+1) in Q such that Zm+1 ⊆Z

′
m+1. Therefore, νm+1 ∈Zm+1 and since

(sm+1,Z
′
m+1) is in Q, our required zone would be (sm+1,Z

′
m+1).

proposition 34. Let q = (s,Z ), q ′ = (s,Z ′) ∈ Q be two zones, then TimePred↑ψ
(Z ,Z ′) is a clock zone.

The proof follows the same lines as the proof of [TY01] (p.48).

Proof. Let q = (s,Z ), q ′ = (s,Z ′) and Z ′′ = TimePred↑ψ (Z ,Z ′). We show that Z ′′ is
convex, i.e, if ν1, ν2 ∈ Z ′′ then ν = kν1 + (1−k)ν2 ∈ Z ′′, for 0 < k < 1. ν1, ν2 ∈ Z ′′

implies that ν1, ν2 ∈Z and ∃ d⃗1, d⃗2 ∈RPr oc
>0 such that ν1+d⃗1, ν2+d⃗2 ∈Z ′ and ∃ t1, t2

> 0, t1 ≤ t2, ∀ t ′, t1 ≤ t ′ ≤ t2, d⃗1 = τ(t2)−τ(t ) and d⃗2 = τ(t ′)−τ(t1) then ν1 + d⃗1 ∈Z ′,
ν2 + d⃗2 ∈ (Z ∪Z ′) and ∃ψ ∈Ψ(X ), (τ, t ′) |=ψ. Let d⃗ = kd⃗1 + (1−k)d⃗2, then ν+ d⃗ =
k(ν1 + d⃗1)+ (1−k)(ν2 + d⃗2), implying that ν+ d⃗ ∈ Z ′, since Z ′ is a clock zone. Now,
we have to show that ∀ t ′, t1 ≤ t ′ ≤ t2, d⃗ = τ(t2)−τ(t ′) and d⃗ ′ = τ(t ′)−τ(t1), ν+ d⃗ ′ ∈
(Z ∪Z ′) and ∃ψ ∈Ψ(X ), (τ, t ′) |=ψ. Given d⃗ ′, d⃗ , we can write d⃗ ′ as kd⃗3 + (1−k)d⃗4,
for some d⃗3, d⃗1 and d⃗4, d⃗2. We have ν1+d⃗3, ν2+d⃗4 ∈ (Z ∪Z ′). If both ν1+d⃗3, ν2+d⃗4

∈ Z or ν1 + d⃗3, ν2 + d⃗4 ∈ Z ′, we are done, since Z and Z ′ are both clock zones.
Considerer the case ν1 + d⃗3 ∈ Z and ν2 + d⃗4 ∈ Z ′. Let g be the smallest positive
real such that ν2 + d⃗4 − g ∈ Z or ν1 + d⃗3 − g (1− 1

k ) ∈ Z ′. To assume the first case,

we have ν1 + d⃗5, ν2 + d⃗6 ∈ Z , for d⃗6 = d⃗4 − g and d⃗5 = d⃗3 − g (1− 1
k ). Moreover, d⃗ ′ =

kd⃗5 + (1−k)d⃗6, which means that ν+ d⃗ ′ = k(ν1 + d⃗5) + (1−k)(ν2 + d⃗6). By convexity
of Z , ν+ d⃗ ′ ∈ Z .

proposition 35. Let (s,Z ) be a zone ofΠ and let (eA , eB) be an edge of the DMZG(C ),
then each of TimeRefine(Z ,Π) and DiscreteSigRefine(Z ,Π) forms a set of convex
zones Z in Π.

Proof. (i) Consider Π1 = TimeRefine(Z ,Π). By Lemma 27, all members of Π
are zones. It remains to show that their union yields Z . Let Zi ∈ Π1, Zi =
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1 Input: A DMTA C =(S,s0,Σ,X,→ta,Inv,F,π)
2 Output: A reachable zone graph DMZG(C ) = (Q, q0, (Σ∪ {ϵ}),TZG)
3 //s ∈ S is a location of C , Z1≤i≤3 are DBM
4 //TZG is a set of transitions (i.e. →ZG= TZG)
5 //D and Q are sets of pairs in S×Φ+(X )
6 //D is the set of open states
7 DMZG BuildSymbZoneGraph(DMTA C ){
8 q0 = (s0,E xtr a+

LU (Z0)) s.t for all x ∈ X and ν ∈ Z0, ν(x) = 0;
9 Q, D = {q0}, TZG = ;;

10 while{D != ;}{
11 Choose and Remove (s,Z1) from D;
12 for(transition e = (s, a,φ,Y , s′) s.t Z1 ∧φ ̸= ;){
13 //Z2 is the successor
14 Z2 = E xtr a+

LU (post(Z1,e));
15 EZG = EZG ∪ {e};
16 if(∃(s′,Z3) ∈Q s.t Z2 ⊆Z3){

17 TZG = TZG∪ {(s,Z1)
e−→ZG (s′,Z3)};

18 }
19 else{

20 TZG = TZG∪ {(s,Z1)
e−→ZG (s′,Z2)};

21 Q = Q∪ {(s′,Z2)};
22 D = D∪ {(s′,Z2)};
23 }
24 }
25 Z2 = E xtr a+

LU ((Z1 ↑R(s) ∧I (s)));
26 if(∃(s,Z3) ∈Q s.t Z2 ⊆Z3){

27 TZG = TZG∪ {(s,Z1)
ϵ−→ZG (s,Z3)};

28 }
29 else{

30 TZG = TZG∪ {(s,Z1)
ϵ−→ZG (s′,Z2)};

31 Q = Q∪ {(s,Z2)};
32 D = D∪ {(s,Z2)};
33 }
34 }
35 return DMZG(Q, q0, (Σ∪ {ϵ}),TZG);
36 }

Algorithm C.1: Reachable (Derivative) Multi-timed Zone Graph with Subsumption.
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1 Input: A DMZG(C )= (Q,q0 = (q0
A

,q0
B

),Σ=ΣA =ΣB ,→ZG), Π0 =Q
2 Output: A stable set of zones Π

3 //Π is a set of zones, Z are clock zones
4

5 ZG PartitionZoneGraph(ZG C, Π0){
6 //Get the input set of zones Π

7 Π′ = Π0;
8 do{
9 // Refine Π′ by delay transitions

10 for(each zone Z ∈ Π′){
11 Π′ = TimeRefine(Z, Π′);
12 }
13 // Refine Π′ by discrete transitions
14 for(each zone Z ∈ Π′) {
15 Π′ ← DiscreteSigRefine(Z, Π′);
16 }
17 }while(Π′ does not change)
18 return Π′;
19 }

Algorithm C.2: The Refinement Algorithm for a Reachable DMZG.

TimePred↑ψ (Z ,Z ′
i ), where Z ′

i ∈Π, for i = 1,2. Since Π is a stable set of zones,

Z , Z ′
1 and Z ′

2 are all disjoint. Assumes ν ∈ Z1 ∩Z2. For i = 1,2, ∃ d⃗i ∈ RX
>0

such that ν+ d⃗i ∈ Z ′
i and ∀ν ∈ Z , ∃d⃗i ∈RX

>0, ∃ τ ∈ Rates, ∃ t , t ′′ ≥ 0 and t ≤ t ′′,
∀t ′, t ≤ t ′ ≤ t ′′, (ν+ d⃗i ) ∈ Z ′

i , d⃗i = τ(t ′′)−τ(t ) and ∀ d⃗ ′
i , 0 ≤ d⃗ ′

i ≤ d⃗i then (ν+ d⃗ ′
i )

∈ (Z ∪Z ′
i ), d⃗ ′

i = τ(t ′)−τ(t ). Observe that d⃗1 ̸= d⃗2, since Z ′
1 and Z ′

2 are disjoint.

Without loss of generality, assume d⃗1 < d⃗2. We have that ν+ d⃗1 ∈Z ′
1 and ν+ d⃗1

∈ Z ∪Z ′
2, that is, either ν+ d⃗1 ∈ Z ′

1∩Z or ν+ d⃗1 ∈ Z ′
1∩Z ′

2, which contradicts
the fact that Z , Z ′

1 and Z ′
2 are all disjoint. This proves that Z1 and Z2 are

disjoint. Now, let ν ∈ Z . We can find RX
>0 and Z ′ ∈Π such that ν+ d⃗ ∈ Z ′ and

∀ν ∈ Z , ∃d⃗ ∈ RX
>0, ∃ τ ∈ Rates, ∃ t , t ′′ ≥ 0 and t ≤ t ′′, ∀t ′, t ≤ t ′ ≤ t ′′, (ν+ d⃗) ∈

Z ′, d⃗ = τ(t ′′)−τ(t ) and ∀ d⃗ ′, 0 ≤ d⃗ ′ ≤ d⃗ then (ν+d⃗ ′) ∈ (Z ∪Z ′), d⃗ ′ = τ(t ′)−τ(t ).
By definition, ν ∈ TimePred↑ψ (Z ,Z ′).

(ii) Now, consider Π2 = DiscreteSigRefine(Z ,Π). For all members of Π2 are zones.
By the distributivity of pred over union (pred(Z1 ∪ Z2,e) ↓ψ = pred(Z1,e) ↓ψ
∪ pred(Z2,e)) ↓ψ is a zone of Z . It remains to show that they are disjoint. Let
Zi ∈Π2, Zi = Z ∩pred(Z ′

i ,e) ↓ψ, where Z ′
i ∈Π, for i = 1,2. Since Π is a stable

set of zones, Z ′
1 and Z ′

2 are disjoint. Assume ν ∈ Z1 ∩ Z2. Recall that the
successor of ν, say ν′, is unique. Since ν ∈ pred(Z ′

1,e) ↓ψ ∩ pred(Z ′
2,e) ↓ψ, it

must be that ν′ ∈ Z ′
1 ∩ Z ′

2, which contradicts Z ′
1 ∩ Z ′

2 = ;.
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D.1 MULTI-TEMPO Tool

First, we introduce the syntax using a simple example for readers familiar with
MULTI-TEMPO, and not interested in subtle details (such as the synchronization
model). A formal definition of MULTI-TEMPO can be found in Section 8.6.3.

D.1.1 Fischer’s Protocol in MULTI-TEMPO

We use Fischer’s protocol presented in Section 8.5.4 as a motivating example. This
version of the protocol is neither the most complete, nor the most simple. We just
use it here to introduce various aspects of the MULTI-TEMPO input syntax. We give
below this model using the MULTI-TEMPO syntax. This model is given in Figure
8.11.

1 automaton FischerPro {
2 clocks={x}
3 locations={S0: invariant=x’=1,
4 S1: invariant=x’>1 && x <= 1,
5 S2: invariant=x’> 1,
6 S3: invariant=x’=1}
7 actions={a_11, a_12, a_13, a_14}
8 edges ={(S0, a_11, reset={x}, S1),
9 (S1, guard=x>1, a_12, reset={x}, S3),

10 (S3, guard=x>=3, a_13, S2),
11 (S2, a_14, reset={x}, S0)}
12 init = S0
13 }

Figure D.1: Fischer’s protocol in MULTI-TEMPO
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sClock declarations: The clock declarations start with the keyword clock. This
model contains the clock: x.sLocation declarations: The location declarations start with the keyword loca-
tions. This model contains the locations: S0, S1, S2, S3. The automaton is
initially in location S0, with rate invariant x ′ = 1 and no invariant (depicted
by invariant true). In location S1 the rate invariant is x ′ > 1 and x <= 1. In
location S3 the rate invariant is x ′ = 1 and no invariant (depicted by invariant
true). In location S2 the rate invariant is x ′ > 1 and no invariant (depicted by
invariant true).sAction declarations: The action declarations start with the keyword actions.
This model contains the actions: a_11, a_12, a_13, a_14.sEdge declarations: The edge declarations start with the keyword edges. The
edges are formed by the source and destination locations, the guards, the
action, and the clock reset (e.g., (S1, g uar d = x > 1, a_12,r eset = x,S3)).s Init declaration: The initial location star with the keyword init. This model
contains the initial location: S0.

Figure D.2: Graphical view MULTI-TEMPO

D.2 MUTES Tool

To run our MUTES tool, it is required that you have two DMTA created with UPPAAL
(DMTA A and DMTA B). A formal definition of DMTA can be found in Section 8.1
(see Figure D.3).

Now, we can run MUTES with two DMTA. Assuming these two models (input
files automaton1.xml and automaton2.xml), the command calling MUTES is as
follows:

1 $ java -cp MUTEs.jar automaton1.xml automaton2.xml
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Figure D.3: DMTA Example

D.3 MIMETIC Tool

To run our MIMETIC tool, it is required that you have a DMTA created with UPPAAL
(DMTA A ). A formal definition of DMTA can be found in Section 8.1. After starting
the tool, the first thing to do is to choose the automaton. This is done via the
respective load buttons, as depicted in Figure D.4

Figure D.4: MIMETIC Tool (Property is satified)

After clicking the button, a dialogue will pop up. Here, you can select the XML
file of the DMTA. The chosen file is displayed in the window below the text field. The
formula can be writing in the text field next to the Edit button (e.g., y i n EE(y <=
3 && y >= 1 && < a > t t ) && (x >= 1 && < a > t t ), see grammar in Section 8.6.4).
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APTL Alternative Propositional Temporal Logic
BA Büchi Automata
CAN Controller Area Network
ClockTL Clock Temporal Logic
CED Complex Event Detection
CTL Computation Tree Logic
DBA Deterministic Büchi Automata
DCD Distributed Clock Derivatives
DEC Distributed Event Clock
DECA Distributed (Recursive) Event Clock Automata
DECTL Distributed Recursive Event Clock Temporal Logic
DBM Difference Bound Matrix
DDBM Derivative Difference Bound Matrix
DFA Deterministic Finite Automata
DMLν Multi-timed Hennessy-Milner Logic with Clock Derivatives
DMTA Timed Automata with Clock Derivatives
DS Distributed Systems
DRTL Distributed Real-Time Temporal Logic
DRTS Distributed Real-Time System
DTA Distributed Timed Automata
DTM Deterministic Turing Machine
EC Event Clock
ECA Event Clock Automata
ETL Extension Temporal Logic
EventClockTL Recursive Event Clock Temporal Logic
FOML First Order Monadic Logic

239



FM Formal Methods
FA Finite Automata
HML Hennessy-Milner Logic
HA Hybrid Automata
icTA Timed Automata with Independent Clocks
KRONOS Model Checking Tool
LBA Labeled Büchi Automata
Lv Timed Modal Logic
LTL Linear Temporal Logic
LTS Labeled Transition System
MIC Multiple Independent Clocks
MIMETIC Multi-timed Model Checking Tool
MITL Metric Interval Temporal Logic
MLν Multi-timed Hennessy-Milner Logic
MTA Multi-timed Automata
MTL Metric Temporal Logic
MITL Metric Interval Temporal Logic
MULTI-TEMPO Multi-timed Automata Tool
MUTES Multi-timed Bisimulation Tool
MZG Mult-timed Zone Graph
NBA Nondeterministic Büchi Automata
NFA Nondeterministic Finite Automata
NTM Nondeterministic Turing Machine
RG Region Automaton
RECA Recursive Event Clock Automata
RTS Real-Time Systems
SOL Second-Order Logic
TA Timed Automata
TEMPO Model Checking Tool
TT Timed Trace
TIS Timed Interval Sequence
TCTL Timed Computation Tree Logic
TLC Temporal Logic with Counting
TLTL Timed Linear Temporal Logic
TLTS Timed Labelled Transition Systems
TPN Timed Petri Nets
TPTL Timed Propositional Temporal Logic
TTS Timed Transition System
TM Turing Machine
UPPAAL Model Checking Tool
WirelessHART Wireless Network
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